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We focus on the challenging problem of simulating thin etasids in con-
tact, in the presence of friction. Most previous approadhesomputer
graphics rely on a linear complementarity formulation for Hamgdcon-
tact in a stable way, and approximate Coulombs's friction lawrhaking
the problem tractable. In contrast, following the seminatknfmy Alart and
Curnier in contact mechanics, we simultaneously model corstadtex-
act Coulomb friction as @ero nding problem of a nonsmooth function
A semi-implicit time-stepping scheme is then employed to disteehe
dynamics of rods constrained by frictional contact: thislketo a set of lin-
ear equations subject to an equality constraint involvingradifferentiable
function. To solve this one-step problem we introduce a strapd practical
nonsmooth Newton algorithm, which proves to be reasonablgiefit and
robust for systems that are not over-constrained. We shavothianethod
is able to nely capture the subtle effects that occur when &fastic rods
with various geometries enter into contact, such as stigkisttabilities
in free con gurations, entangling curls, resting contaatbraid-like struc-
tures, or the formation of tight knots under large constgiftur method
can be viewed as a rst step towards the accurate modeling oérdic
brous materials.
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1. INTRODUCTION

1.1 Motivation

Objects composed of thin deformable rods in contact are widely

effects, or tangles and knots that often occur in brous materials
(see Figure 1), requires a realistic, nonsmooth model for friction.

Fig. 1. Typical con gurations observable in real assembl@sthin
strands. Left: Tangled wires forming loops and knots. Ridlairs wisps
sticking onto another hair layer due to dry friction.

Recently, a number of successful models for the dynamics of thin
elastic rods (also referred to as “strands”) were proposed in the
computer graphics (CG) community [Bertails et al. 2006; Hadap
2006; Spillmann and Teschner 2007; Theetten et al. 2008; Bergou
et al. 2008; Selle et al. 2008]. In this paper, we focus on the speci c
problem of thecontact and friction responsapplied to thin elas-

tic rods. This topic was hardly addressed in the past, because of the
complexity of such a problem and the inability of classical methods
to bring satisfying solutions. We propose here a rst step towards
the realistic modeling of dynamic rods subject to frictional contact.

1.2 Related work

We brie y review existing models for thin elastic rods before pre-
senting the main approaches for simulating contact and friction in
the general case of interacting (rigid or deformable) bodies. Finally,
we summarize the different techniques that have been employed for
simulating contact and friction in the case of thin elastic rods.

1.2.1 Modeling thin elastic rodsModels for thin elastic rods can
be categorized into two distinct familiestaximal-coordinateand
reduced-coordinatesiodels.

spread in the real world: hair, wool, entangled ropes or wires, knots
in suture strands, etc., all fall into this category. Simulating such Maximal-coordinates models generally parameterize the centerline
systems is particularly challenging, for three main reasons: rst, of the rod explicitly as a sequence of 3d space points, and formulate
nding a robust model for an individual strand that properly cap- extra constraints to enforce the kinematics of the rod [Rosenblum
tures the important modes of deformation - bending and twisting et al. 1991; Lenoir et al. 2004; Choe et al. 2005; Spillmann and

- is known to be a dif cult problem, mainly due to the stiff, high-  Teschner 2007; Bergou et al. 2008; Selle et al. 2008]. These ap-
order equations that characterize such a system. Second, resolvingroaches are popular because nding maximal-coordinates is sim-
the multiple impacts and resting contacts occurring within a sin- ple and often leads to a sparse, block diagonal mass matrix. How-
gle entangled rope or an assembly of bers is complex, and made ever, formulating the extra constraints can be challenging, espe-
even more dif cult by the slender geometry of individual bers. cially when one wants to account for the inextensibility of the rod:

This calls for the use of extremely robust methods both for colli- adding stiff terms can lead to stability issues [Rosenblum et al.

sion detection and response. Third, capturing the typical stick-slip 1991; Spillmann and Teschner 2007; Selle et al. 2008]. Another
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dif culty stems from the numerical drifts and energy loss when en- In the same vein, friction is often modeled using simple viscous
forcing these constraints over time [Bergou et al. 2008]. forces, especially in the case of self-contact within deformable ob-
) ) jects, for the sake of simplicity [Baraff and Witkin 1998; Choe et al.
In contrast, reduced-coordinates models parameterize a rod us-2005; Spillmann and Teschner 2008; Kaldor et al. 2008]. Such a
ing its actual degrees of freedom [Hadap and Magnenat-Thalmannmodel cannot capture the threshold effect that characterizes fric-
2001; Hadap 2006; Bertails et al. 2006; Bertails 2009]. Such tion between solids.
parameters often express a local rotation of the systeq, . ) )
joint quaternions in the case of the articulated rigid bodies sys- EXPIicit constraint-based methods: Instead of adding some
tem [Hadap and Magnenat-Thalmann 2001; Hadap 2006] and forces that W|II_ hopefullylle.a!d to a coII|S|on-freel state, an alter-
material curvatures and twist in the case of the Super-helix Nate way consists in deciding advancewhat positions and ve-
model [Bertails et al. 2006; Bertails 2009]. The parameterization [0Cities should be at next time step. To enforce the desired state,
is thus guaranteed to be minimal, with no redundant variables, andSOmMe authors propose to directly alter positions and/or velocities
the kinematic constraints are always exactly maintained over time. &t the end of the time step [Baraff and Witkin 1998ulér et al.
In this kind of formulation however, the centerline of the rod has to 2007] while others compute the corresponding forces that will ex-

be computed recursively from root to tip, as a nonlinear function of actly lead to the desired, collision-free state [Spillmann et al. 2007;
the parameters. Spillmann and Teschner 2008]. Because of its simplicity and ef -

ciency, this kind of approach has become very popular in the CG
An argument that is often raised against reduced-coordinates mod-community for resolving contact in the case of systems parame-
els is the (apparent) dif culty to handle contact and friction with a  terized by sample 3d points, such as 3d point-based deformable
non-explicit centerline [Bergou et al. 2008; Selle et al. 2008]. In this bodies [Miller et al. 2007], cloth [Baraff and Witkin 1998; Bridson
paper however, we show that reduced-coordinates models perfectlyet al. 2002], and hair [Choe et al. 2005; Selle et al. 2008]. How-
t into our frictional contact formulation, with no additional cost. ~ ever, this kind of technique is hardly applicable to systems that are
We present results using the Super-helix model as our rod model.subject to multiple impacts (in this case the desired change in ve-
To demonstrate the versatility of our approach, we have also per- locity may be unclear), as well as to sophisticated models such as
formed simulations using maximal-coordinates rod models such asreduced-coordinates models, where the 3d positions at the surface
an implicit mass-spring system [Baraff and Witkin 1998] as well as 0f the system are not necessarily linear functions of the degrees of
the more recent GRDEmodel [Spillmann and Teschner 2007]. We ~ freedom.
demonstrate that the convergence of our contact algorithm i insen-|, 5 gimjjar spirit, Coulomb friction is often modeled explicitiye.,
sitive to the nature of parameterization of the roq models, but rather o oyt state of the objects (take-off, stick, slip) and the sliding di-
depends on thievel of constrainingf the dynamical system. rection are determined in advance by considering the contact forces

and relative velocities at the current time step [Baraff 1994; Bridson
1.2.2 Modeling contact and friction Modeling contact and fric- et al. 2002; Selle et al. 2008]. Again, this approach is simple, but
tion has been an active research area in CG for several decades?s it does not guarantee that the Coulomb conditions are satis ed
Because of the large number of techniques employed and the wideat the end of each time step, it may suffer from drifts over time and
spectrum of targeted applications (ranging from rigid bodies to 3D thus be inaccurate. Moreover, to be able to capture perfect dry fric-
deformable objects, cloth, thin shells, and rods), it can be somewhattion, this method requires the ability to directly control the change
dif cult for a non-expert reader to nd a path into this intricate eld.  in velocity and position of the contacting points of the system. For
We try here to offer a synthetic view on the topic by classifying Most systems, which are not controllable without altering their own
previous work into three main categorigenalty-basedexplicit dynamics, this is seldom achievable.
constraint-basedandimplicit (:_onstralnt-basednethods. Note that Implicit constraint-based methods: A last solution is to consider
we focus here on the modeling of thesponseo collision. For a that the relative velocities and directions of friction at next time step
recent survey on collision detection methods, we refer the reader 5,4 part of theinknownsf the problem. The dynamic system, aug-
to [Teschner et al. 2005]. mented by contact variables, has then to be solved, traditionally us-
ing a xed point method or an optimization algorithm. Computing
contact and friction implicitly is the only way of strictly enforcing
the proper conditions at the end of each time step, without the need
for manual checking and readjustment.

Penalty-based methodsOne common way of preventing inter-
penetration between colliding objects consists in adding mutual re-
pulsive forces of the formkf(d), whered is the penetration depth
detected at current time step [Moore and Wilhelms 1988]. Though
simple to implement and ef cient, this method often fails to prevent Robust approaches have been provided for handling contact with-
excessive penetration if the stiffness fadkas not large enough, out friction, mostly relying on linear complementarity problems
unless barrier functions are used [Kaldor et al. 2008; Harmon et al. (LCP) [Baraff 1989; Baraff and Witkin 1992]. However, simulat-
2009]. However most barrier functions suffer from unbounded se  ing contact with Coulomb friction in 3d remains a challenging is-
ond derivatives which ruin the stability of the xed step integra- sue because non-linearity has to be introduced into the equations.
tion schemes. To circumvent this problem, Harmon et al. [2009] To overcome this issue, most approaches in CG propose to ap-
recently proposed the use of discrete penalty layers coupled with proximate Coulomb's friction law. Some authors model friction us-
an asynchronous symplectic solver, at the price of losing com- ing a Tresca-like law where the sliding threshold is an arbitrary
putational ef ciency. Another issue inherent to penalty-based ap- value independent of the normal forcedfistedt 1984]. This model
proaches is the introduction of parasitical high frequencies due to is not satisfying in many common situations. Consider for exam-
the recourse to large stiffness values for preventing interpenetra-ple two different solids lying on a horizontal plane. If an increas-
tion [Baraff 1989]. Penalty-based approaches are thus generallying, horizontal traction force is applied to them, both of them will
not satisfying for robust contact handling, however they remain start to slide exactly at the same time, no matter what their mass
widely used in situations where time performance is a crucial cri- is. In [Kaufman et al. 2005], Coulomb friction is approximated
terion [Barbt and James 2007]. by considering that the normal component of the reaction force
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is known from a rst computational step without friction. This  due to Alart and Curnier [1991] - which is subsequently solved
procedure allows them to retrieve a standard convex QP and canusing a nonsmooth Newton algorithm. Moreover, our appraach

be viewed as a Tresca-like approximation at each time-step. To multaneouslgolves all frictional contact problems, without relying
compute hair-body frictional contact, Hadap [2006] replaces the on a Gauss-Seidel like algorithm. In our results section, we show
Coulomb law with a new model based on an LCP. However, the that provided our dynamic system is not excessively constrained,
model fails to capture dry friction properly: for a contact force in  we obtain satisfying convergence results that guarantee a good vi-
the interior of the friction cone, the relative velocity is not con- sual precision of our simulations.

strained to be zero. More recent approaches start with the Coulomb

law equations and linearize the friction cone to come up with aset 1 3 3 self-contact and friction in rodsDue to the number of ap-

of LCP to be solved [Erleben 2007; Kaufman et al. 2008; Otaduy pjications involved, the study and simulation of self-contact in an
et al. 2009]. While this approximate formulation captures both dy-  assembly of thin elastic rods has increasingly drawn attention from

namic and static friction properly, it introduces some anisotropy in researchers in both mechanics and computer graphics.
the sliding direction unless a high number of facets is used [Acary

and Brogliato 2008, Sec. 13.3.7]. A trade-off has thus to be made In both elds, most Lagrangian approaches for simulating contact
between accuracy and computational cost. between strands or groups of strands are penalty-based [Plante et al.

. . . 2001; Durville 2004; Choe et al. 2005; Bertails et al. 2006] or
It is overall surprising that no method modeling exact Coulomb hased on explicit constraints [Spillmann and Teschner 2007; 2008;
friction has become popular in the graphics community so far. Bergou et al. 2008; Selle et al. 2008]. In all these methods, fric-
Yet, such methods have been developed and successfully used fofion is simply handled through a viscous term. These methods of-
years in the contact mechanics community for accurately simulat- ten suffer from instability or inaccuracy issues, and are unable to
ing multi-body systems involving frictional contact, such as gran- capture subtle frictional effects with threshold, such as stick-slip
ular materials [Moreau 1994; Jean 1999]. We believe the main effects. To simplify the problem of self-contact in large assem-
reason why such methods have not caught on yet in the graphicsplies of strandsd.g, hair), some approaches resort to procedural
community is the apparent dif culty of implementation for peo-  modeling for capturing typical emerging phenomena, such as hair
ple who are not experts in nonsmooth optimization. In this paper, clumping, either by constraining hair to move as a predetermined
we demonstrate that the frictional contact problem can be elegantly set of wisps [Plante et al. 2001; Bertails et al. 2006], or by adding
expressed as a zero nding problem, and provided the system is some attractive forces to capture stiction [Selle et al. 2008]. Hadap
not over-constrained, be simply solved using a Newton algorithm - and Thalmann [2001] were the rst to explore continuum laws for
without resorting to a complementarity formulation. Our algorithm  modeling hair self-contact. Very recently, [McAdams et al. 2009]
is furthermore very easy to understand and implement, and does Notombined a Lagrangian and an Eulerian representations for hair to
rely on any black box optimization code. To help researchers test pring some discontinuous details to the simulation. Although spec-
our approach and compare their methods with ours, we freely pro- tacular, their results do not capture the typical stick-slip effects that
vide on our webpage the source code for our solver, coupled with would be visible within a hair clump coming to rest.

the simple interactive double loop example illustrated in Figure 9. )
From the state of the art, it actually turns out that whatever the scale

We note that Durieet al. [2006] made a rst attempt to model ex-  of the targeted applications is (a knot in a single rod, hair with a
act Coulomb friction for the real-time simulation of frictional con-  hundred guide strands, hair with thousands of simulated strands),
tact for haptics. Their approach relies on a so-called Gauss-Seidelrobust contact handling with accurate friction modeling remains a
algorithm that iteratively solves each single frictional contact while constant missing elemee propose a rst solution to this chal-
other contacts are frozen: for each contact, the contact force is com-lenging problem. Our method is related to implicit constraint-based
puted by projection onto the (non-polyhedral) friction cone. The models, which, to the best of our knowledge, were never explored
authors show that their method is more ef cient than methods re- for solving self-contacts within an assembly of bers. Furthermore,
lying on a linearized friction cone for which the number of facets we introduce a velocity-based model for simulating exact Coulomb
is suf ciently large to ensure a given precision. In their approach friction. This allows us to design a pure physics-based model, able
however, the projection step onto the friction cone is signi cantly to capture for the rst time typical contacting phenomena that occur
simpli ed as the local Delassus operator is roughly approximated within an assembly of strands.

by a diagonal matrix. This approximation has no incidence when

applied to isotropic objects such as spheres, but it may give rise

to important drifts when dealing with general, anisotropic objects, 1.3 Contributions

for which the tangential velocity during dynamic friction not only

depends on the applied external force, but also on the geometry of—We provide a compact formulation of frictional contact for thin
the object. Another concern of [Duriez et al. 2006] is that the for-  elastic rods. Unlike previous approaches, our formulation exactly
mulations used for contact and friction laws are not velocity-based, models the Coulomb friction law as a zero nding problem of a
but rely on the normal and tangential gaps between contacting el- nonsmooth function, which turns out to be much simpler and
ements. Such acceleration-force formulations have been shown to ef cient to solve compared to a nonlinear complementary for-
be inconsistent as they do not necessarily yield a solution [Baraff mulation. Our approach is inspired by the theoretical work by
1993; Stewart 2000]. In contrast, impulse-velocity formulations for ~ Alart and Curnier [1991], which, to the best of our knowledge,
frictional problems turn out to have better properties of conver-  was never exploited in CG to solve frictional contact.

gence [Marques 1993; Stewart 2000], and as such, are often pre- . L ) . -
ferred. —We give a practical implementation for solving the optimiza-

tion problem resulting from our frictional contact model. Our
Unlike [Duriez et al. 2006], our approach provides a velocity-based = method combines a nonsmooth Newton step with an accurate
formulation for the frictional contact, and relies on a simple, func- line search in order to stabilize the algorithm and accelerate its
tional formulation of theexactCoulomb friction model - initially convergence. Although theoretical convergence properties are
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2. MODELING CONTACT WITH PERFECT COULOMB
FRICTION

The friction model proposed by Charles de Coulomb around 1770-
1780 is a macroscopic model which captures a crucial physical phe-
nomenon of friction: the threshold of sliding. This phenomenon is
particularly visible on brous materials, such as hair, where bers
often get stuck onto each other, giving rise to static con gurations
with multiple bers orientations, or to the spontaneous formation
of entangled wisps (see Figure 1). Though simple in appearance,
the Coulomb friction model is actually dif cult to take into account
exactly as it is a nonsmooth, multi-valued law which cannot be han-
dled using classical mathematical tools of smooth analysis.

Formally, the Coulomb friction law can be describes a se€C

R® RS relating the relative velocity' and the contact force

at contact point: the couple §';r') satis es the Coulomb friction

law if and only if (u';r') 2 C. In the sequel, after de ning some
notations, we shall give two equivalent formulations®fon the

one hand, the classical disjunctive formulation, easy to understand
but hardly tractable in practice; on the other hand, a zero nding
formulation, initially due to Alart and Curnier [1991], which gives
rise to a simple robust algorithm that we derive in Section 4.

Fig. 2. Various simulations of frictional contact in thin od-rom left to
right and top to bottom: interactive formation of a tight knoidaa plec-
toneme, simulation of 76 spaghetti falling in a plate, complaix bontacts
with Coulomb friction in wavy hair (84 simulated strands).

2.1 Local forces and velocities

lost in the nonsmooth case, we provide a simple experimental ) ) ) ) )
criterion, based on the degree of constraining of the system, to Let us consider a mechanical system in 3d space involviogn-
characterize the quality of convergence. When systems are nottact points at a given instahtEach contact, labeled by 1;:::n,
over-constrained, our solver yields fast convergence at tolesance is assumed to involve two and only two contacting bodies, denoted
suitable for graphics purposes and we show that many ber sys- by A andB'. We further assume that contacting surfaces are suf-
tems typically lie in the favorable case. ciently smooth, so that a normal vectet (see Figure 3) can be
de ned. Taking bodyB' as a reference, consider the relative veloc-
i | | i | 1 i |
—We demonstrate the versatility of our approach by perform- g\}' I\JNOf At Wi'th_reisz?i;tCB ar;d the forca afplfled byI; ontz

ing simulations on various representative rod models: an im- *;~ € notex, = X e (scalar) component of a vectdy an

plicit mass-spring system, the more elaboraterRBGE model x =X x€ the tangential (vector) part of.
(maximal-coordinates), and the Super-helix model (reduced-
coordinates). To some extent, we also illustrate the effectiveness
of our approach on other dynamical systems, such as rigid bod-
ies, while clearly de ning the class of systems to which our con-

tact method is the most adapted. ~ UN F-----=

—We show that we can robustly simulate systems with large con-
tact forces, such as tight knot tying, as well as capture subtle
collective behaviors in entangled brous materials, such as hair,
by using a pure Lagrangian method. To the best of our knowl-
edge, this is one of the rst attempts to accurately model contact
and friction within free assemblies of bers, regarding both CG
and computational mechanics elds.

(B)

Fig. 3. BodyA' andB' with tangent and normal spaces

2.2 Disjunctive formulation

1.4 Organization Friction coef cientsm (0 nl ngax) being given, let us de ne
the second-order cone with coef cient (the friction cone) by

Our paper is organized as follows. Section 2 introduces a functional Ky = fkxck  mxg RS (1)
formulation for Coulomb's friction model, derived from the early

work by Alart and Curnier. In Section 3, we formulate the discrete

problem of the constrained dynamics that we wish to solve at each  1This formalism actually applies to all friction laws. For ewgle, the
time step, and provide a practical solving algorithm in Section 4. viscous friction law can be formulated by de ning the €tas a vector
Finally, results of our approach are presented in Section 5 and dis-space. In the case of Coulomb frictidd pbviously has a much more com-
cussed in Section 6, before concluding. plex structure.
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Asiillustrated in Figure 4, Coulomb's law was originally formulated  to demonstrate that it is actually possible to give a functional char-

as adisjunctionof three cases: thati@';r') 2 C(¢'; m) if and only acterization of the Coulomb friction lawe., to nd a function fA°
if one of the three following casés occurs for each?2 1;:::n: of R® R%®in R3such that
—take-off :r' = 0 andu}, O, (ur)2C(em 0 f°ur)= 0. 2)
—stick :r' 2 K andu' = 0, The function fA° proposed by Alart and Curnier to satisfy this
' ' ' ' equivalence is de ned as
—slide :r' 2 7K,; n0, u, = 0, u\ 6 0 opposed ta': N fo(un)
. i P . — N !
9a'>0;rt= a'u. 2 (ur) : f2(u;r) 3)

Coulomb's law can be interpreted as follows: if the rst case, \ pore the so-calledormal andtangentialparts of f respectively
the normal relative velocity is nonnegative and the contact breaks read

(take-off case). Then there can be no force between the two bod- (
ies; this models dry friction without adherence. Note that rebound . R® R¥! R

is handled separately through a restitution coef cient (Section 3). N @n 7! Bty o) (4a)
The two bodies can also remain in resting contact, then the contact ! ’ AN INEN N

force can lie anywhere iK,;. Finally, if the two bodies are sliding  and

with respect to each other with tangent relative velocity, then the ( 3 p3, 2
contact force must belong to the boundaryKgf and the tangent AC . R® R! R (4b)
force must be collinear to the relative velocity with the opposite di- o) 7 Raoimy) (Fr Felr)  Fr '

! ) »ITEN

rection (according to the “maximum dissipation principle” [Moreau
1988]). The value ofrt depends on the characteristics of the con- wherer andr; are two positive constants(= ry = 1 for in-
tacting surfaces (fromm = 0 for perfect contact without frictionto  stance)B(0;d) R? is the ball centered if of radiusd, and R

m = max for rough surfaces). is the projection function (applying to any vector of dimension 1
or 2) onto the convex s& (dim K  2), with the convention that
r2K r2 @K 8y 2 R? Ry(y) = Oge:

We give the proof for equivalence (2) in appendix A. It is fairly
0 simple and we invite the reader to check the equivalence by himself

Un so that he can fully understand the meaning and the power of the
Alart-Curnier function with respect to Coulomb's friction law.
r=0 u=0 uy =0
3. FORMULATION OF THE ONE-STEP PROBLEM
take o sticking sliding

Let us consider a set df strands (modeled as implicit mass-spring
Fig. 4. The three cases of Coulomb's law chains, @RDES, or Super-helices). The mass-maivbof this sys-
tem is diagonal-block where each blockontains the mass-matrix
M; of theil" strand. Letm be the total number of degrees of free-
dom of the system, and 2 R™ the generalized velocities of the
mechanical system, resulting from the concatenation of the gener-
alized velocities of thé\s individual strands. Lef collect the set of
(internal and external) forces applied onto the total systeade-
notes the gradient that relates the local velocity of the mechanical
system to its global velocity, and its calculation is explained in Sec-

This disjunctive formulation is intuitive, but not very practical be-
cause of its combinatorial nature (there afecases to check, if
the system contains contacts); in the next subsection, we give an
equivalent, but more tractable, formulation of Coulomb's law.

2.3 Functional formulation tion 4.1.
; . . 3 ) We wish to solve the following problem in the unknow(msu;r),
In this subsection we shall omit the upper sciipf contact vari- whereu 2 R3" gathers all the relative 3d velocitieh at contact

ables, for the sake of clarity. Alart and Curnier [1991] were the rst points, and 2 R3" collects the 3d contact forces

8
dg , . _ »»
°Note that unlike most approaches, we compactly formulate ticfrial 2 M (@) ot +f=J7r

contact law that both includes the pure contact law (namedySignorini > u=Jg+w ®)
conditions]Moreau 1988]) and the pure Coulomb friction law. " 8i= 1 (W déirl)2C(e;n).

3The Signorini law classically relates contact forces tefipenetration o o
distances. Here we model contact at a higher order, usingoaitiebased The selC(€; m) contains the couple@';r') satisfying Coulomb's
formulation. Moreau proved that in the continuous case, #iecity-based law for a given value of the friction coef cientt and a normal
formulation of constraints implies the Signorini conditiofiesult known vectorée at thei-th contact point. The constadt 0 accounts for
as the “viability lemma”) [Moreau 1988]. As we already mentidrie the impacts: after a shock, Coulomb's law imposes that the normal part

introduction, it has been experienced that in the numeriastcand when ~ ofu'  c'é be zero, which implies that the norm of the normal rela-
friction has to be accounted for, the velocity-based fortimeconducts to tive velocity u), takes the valu€'. By settingc' equal to a constant
more stable simulations [Stewart 2000]. k (with k 2 [0;1]) times the normal velocitpeforethe shock, we
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obtain Newton's impact law witk = 0 modeling inelastic impacts 4.1 Computation of J

andk= 1 modelling perfect rebound. In practice we model impacts

between thin strands as merely inelas_tit_:, thus choagingo._ For As expressed in equation (5), the gradient malrof size(3n;m)

impacts between a heavy rod and a rigid body however, it may be |inearly relates the 3d relative velocitiesat then contact points

suitable to set' to a small non-zero value to allow for some re- 14 the'm generalized velocitieg of the system. Let us consider

bound. the 3d row-block); corresponding to thié contact point. As men-

tioned in Section 2.1, we assume that each contact involves no more

than two bodies (or body parts), denofdandB'. Letr” (s¥;q*)

( M(Q) el SRS (r®(s¥;q®) respectively) be the centerline of the rod correspond-

ot o (6) ing to bodyA' (resp. to bodyB'): it gives the spatial coordinates of

f°Qa+w cer)=0 the point located at the curvilinear abscis8aresp.s2') on the rod

Al (resp.B') with generalized-coordinateg (resp.g®). Atinstant

te, Ji thus reads

Solving the initial problem (5) amounts to solving

wherece is a constant vector containing the terchg from (5) and

f#¢ collects the Alart-Curnier function (3) at all contact points. Us-
ing an arbitrary step lengttt, we follow Moreau's time-stepping . e
scheme for integrating nonsmooth problems [Moreau 1988]: the Ji(te) = 17 - (@ q” (o)) (97 (tc)

BI
velocity derivative%% is replaced with the velocity jump between Ta

the end and the start of the timestep, the position derivatiseap- wheresﬁi and s‘g’i respectively denote the curvilinear abscissa at
proximated at rst orderr andu are discretized using amplicit

i i
scheme (since brutal changes in their values are expected due ggontact point for rodA" and rodB i respectively. Note that in the
impacts) and the other terfhare discretized explicitly (since they ~ case of self-contact, we hawé= B andsf 6 <
are as;umgd to be §mooth). We. denotg{p[) the discrete-time The termJ; can thus be computed by calculating the formal gra-
approximations ofq;r), wherel_is the discrete impulsg. 4 dt, T . . . .
and byM, J, f andw (accounting fowv  ce) the discretized data, dlent”—q of a rod with centerling and generalized-coordinatgs

wheref = frdt M vi. We thus get the following one-step problem and evaluating it at the point of current contacSuch a compu-
in the unknowngv; ! ): tation is straightforward for the mass-spring chain and th&Ge

model. In the case of the Super-helix model, we relied on the Maple
software [MapleSoft 2010] for deriving the gradient analytically.

<

<
|
\Y

+

| =+
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oo
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4.2 Elimination of v

Our method consists in searching a solution to system (7) using
Newton's algorithm (despite the fact th&t® is nonsmooth). We The problem (7) can be reduced by eliminatinfrom the equa-
have formulated our initial problem in terms of impulses and ve- tions. Indeed, from (7) there holds
locities instead of forces and displacements. It is well-known that
the impulse/velocity formulation is the only way to consistently in- v=M lfL M i
tegrate time systems with impacts. The price to pay is a formulation =~
of unilateral constraints and Coulomb friction on the impulse level, which implies
which means with a time integral of forces when the evolution is 1> 1e _
smooth enough. For more details on the slight differences between M{z J }— 1& %ZM }t‘ Wl +b
an impulse model of friction and the standard one in forces, we W T Zh
refer to [Fémond 2002; Acary and Brogliato 2008]. B
whereW is the so-called Delassus operator. Its computation in-
volvesM 1: it can be performed column by column using a conju-
gate gradient algorithm (thevi andJ need not be assembled), or
4. COMPUTATION OF THE CONTACT FORCES using the Choleski decomposition Mf (which can be reused from
a time-step to another if the mass matrix does not change).

At each time step, we wish to solve the system of equations (7)
in the unknowngv;/ ). We rst brie y explain the computation
of J before reducing the system as a zero nding problem of the fA(WI +b;l)= 0. 8)
function fA°. The solving by Newton's method requires the com- T
putation of the Jacobian matrix ¢, which is described in de- ~ On the one hand, this new system is smaller than system (7) (size
tail in the following. The nal algorithm for solving the frictional 3ninstead ofm+ 3n) and we exploit the fact that the linear part of
contacting problem, together with interpenetration correction and system (7) does not change during Newton's iterations by comput-
optimization, is nally presented. ing W once for all. On the other hand the computationfmay
be costly andV may not be as sparse as system (7). The choice of
performing this elimination or not is probably problem-dependent.

After eliminatingyv, the problem becomes

4Actually, in the case of Super-helices and implicit massrgpchains, In our experiments, we chose to use it siiéavas sparse enough.
internal elastic forces are computed implicitly. The actuairira/ of our Indeed, despite the fact that the mass matrix and the gradlient
discretized system (7) is thdd + dt?K, whereK is the total stiffness ma- individual rods are dense, they are sparse and block-structured fo
trix of the system. We skip this detail in the description @ gigorithm, for the whole system due to the connectivity of the contacts and the
the sake of simplicity. bodies (see Section 4.5).
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4.3 Computing the gradient of f*°

The normal directiore ati-th contact point being known, choose
€5 ande! so that(€; €5 €,) form an orthonormal basis. De ne the
matrix of the projection onto the normal direction By := (€)”

and the matrix of the projection onto the tangent direction by
P, :=[€5€]”. We are now able to differentiaté. For the sake

of simplicity, detailed calculations below are given in the case of a
single contact.

Normal part: Functionf/® de ned by (4a) is continuous and af ne

by pieces :ifry  ryuy < 0, then
1[ AC ﬂfAC
AC N = = =
fo(ur) Pur; o =01 3 —— r Py
whereas, ify ryuy> 0
ﬂfAC ﬂfAC
f,ﬁc(u;r): Py, 1[u P 71]: =01 3

Tangential part: De ne the following functiong whose Jacobian
matrix, where it exists, is computed in appendix B:

(R RZ21 R?
(diy) 7! By (¥):

Then the tangential paft© of the Alart-Curnier function (4b) is
f2(ur) = g({@V IDTr re Pﬂl) Psr:

Differentiating f2 using the chain rule, we obtain
(
fIfr —

9 1d , f9 Ty
u™ Td 17u Ty fu
fr_f99d, 9y p
fr = fd o fyf T
that is to say, using the formulas of appendix B:
—If kyk d, then
E f2ur) = rPy;
ﬂf& (ur)y = r.Py;
> g 0
o (ur) 2 3!
—If kyk> d> 0, then
5 fic(ur) = I gx P
f >
T = rodlz PP
2 ﬂfT d vy :
’ (ur) = kykPN kyk(|2 W)PT Pr:
—If kyk 0 d,then
8
> f(ur)y = P
AC
M) = 0, 5
> gt
ﬂ; (u;r) P;:

In limit cases, such dg/k = d, the computation of the Jacobian ma-

equality case, ryuy = 0. For more details on the computation of
the generalized gradient and the theoretical aspects of generalized
Newton's method, we refer to [Qi and Sun 1993]. The formulation
of the functionf*® slightly differs from the original one presented

in [Alart and Curnier 1991]. In particular, the tangential pgft

uses the projection on the b&8(0; nt,) rather than the projection

on the modi ed ballB(0; P+ (ry  ryUy))- In [Christensen et al.
1998], the same modi cation is done to simplify the computation
of the function and its gradients; according to our experience, this
variant does not change the behavior of the Newton method.

4.4 Newton step computation, line search and
convergence

Once the computation of the Alart-Curnier functiéf® and its
Jacobian matrix is implemented, the algorithm is simple: the un-
knowns are initialized (in the case of non-vanishing contacts, we
use the values of the previous time step), and the Newton step
is computed by solving the linearization of system (7). A simple
Goldstein-Price line search [Bonnans et al. 2003] is then performed
in the Newton direction to ensure that the least-square criterion
kf*°k? decreases. We loop untilf*°k? goes below a given tol-
erance or, alternatively, until the maximum number of iterations is
reached. The nonsmooth Newton method and the Goldstein-Price
line search are respectively described with pseudo-code in algo-
rithms 1 and 2. An important feature of our algorithm, compared to
some previous works limited to the search for stationary points of
optimization problems (not necessarily solutions of the frictional
contact problem) is that our convergence ek6t°k? is a mea-
sure of the distance to attualsolution of our initial problem (7).
Indeed, recall that cancellinff® is strictly equivalent to solving
problem (7).

Algorithm 1 Nonsmooth Newton Method.
Require: Initial guess rg
Require: tol tolerance, itermax maximum number of iteration
Ensure: Solution of fA°= 0

[* Initialization */

k 0

Mg o

[* Start Newton loop */

while 3kf*°(r)k?> tol and k  itermax do

/* Compute A€ and choose a sub—gradient */

uc Wrg+b
by fAC(Uk re)
Ax (Uk now + 1< — (U3 Tk)

[* Compute Newton's direction /
Solve Axdy = by
[* Compute length with a line search procedure. See Algorithm 2. */
Compute ag.
[* Update r, */
1% rg + ayxdy
end while

4.4.1 Convergence, in theorySincekf*°k? decreases along the

trix does not make sense. The notion of generalized gradients hasterations, it eventually converges (unless the maximum number of

to be introduced which numerically amounts to arbitrarily choosing

one of the two possible formulas. For the normal part, for instance,

one of the conditiom, ryuy > 0 (orry ryuy > 0) includes the

iterations is reached), but not necessarily to a solutiéffk? may
converge to a value above the given tolerance. Some further hints on

the theoretical expectations of convergence are given in Cadoux's
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Algorithm 2 Goldstein—Price line search procedure
Require: ajnjit initial value of line length
Require: [a);a,] initial interval for a
Require: amax maximum value ot
Require: my = 0:1;my = 0:9 user de ned parameters
Ensure: Optimal value ofa

a  amin

/* Compute the initial value of the merit functidit

qo  zkFC(uin)k2

/* Compute the initial value of the slop#

a  (F(un) T IS (U nddy

success FALSE

while successs FALSEdo

Mrial T+ adg
Utrial Acwrtrial +b
a f (l{'trial Ttrial)

gt _do
slope 2

if (slope  m2q and slope  msq3) then
success TRUE

else
if slope< m,qQ then
a a
else
a, a
end if
if ay < amaxthen
a 3(a+ay)
else
a 10a
end if
end if
end while

PhD thesis [2009]. One the one hand, the dimensidn m of ma-
trix J (weren is the total number of contactsyis the total number
of degrees of freedom of the system, ahds the dimension of
space, typicallyd = 3) is deeply linked to the existence of a solu-
tion to the one-step problem (7): whew > m, J is not surjective

anymore, which does not guarantee the existence of a solution. On

the other hand, the non-surjectivity dfimplies W's singularity,

and consequently, is likely to make the problem harder to solve.
For more details, we refer the reader to [Cadoux 2009; Acary et al.
2010].

4.4.2 Convergence, in practiceln our experiments presented in
Section 5, we shall see that the fraction

plays an important role with respect to the quality and rate of con-

4.5 Collision detection and constraints partitioning

This paper focuses on the response due to impact and resting con-
tact, and not on collision detection. However, in order to optimize
the solving of the system resulting from the active constraints, we
provide a constraints partitioning technique, described below.

The geometry of a rod is approximated by a set of bounding cylin-
ders and for each pair of objects subject to collide we track the pairs
of closest points that lie on the axes of the corresponding boundary
cylinders over time. One contact is declared active when two dis-
tinct boundary cylinders are found to intersect at a given timestep,
i.e, once the distance between the two closest points is below the
diameter of the rod. In practice we used around 1 cm-long cylin-
ders,i.e., 30 cylinders for a typical strand of 30 cm simulated in
most of our examples. This simple algorithm proved suf ciently
robust for our tests, even when using large time steps. For very
high speed motion however, it may be preferable to use continuous
detection algorithms [Redon et al. 2002] in order to capture every
single occurring collision.

To save computing time, we partition the set of active constraints
and the set of strands infd> groups ofcoupledconstraints and
strands at each time step. This allows us to sblyeindependent
systems of the form (7), instead of one single large system account-
ing for all strands of the scene. To determine the partiRonlet

us represent the sets of constraints and strands as a graph, where
nodes stand for strands and edges for constraints. An example is
presented in Figure 5. Two different strands (resp. constraints) are
said to be coupled if there exists a constraints path in the graph
(resp. a strands path in the dual graph) connecting their correspond-
ing nodes (resp. their corresponding nodes in the dual graph). Par-
titioning our initial set of constraints thus amounts to partitioning a
graph into connected sets, which is achieved ef ciently.

P = {{e1, ¢a, 3}, {ea}}

Fig. 5. Example of constraints partition using graph conmitgt Left:
contacting strands; right: corresponding graph and part{Np = 2).

Finally, we have accelerated the search for contacting pairs by em-
ploying a spatial hashing of the 3d space with a uniform grid, simi-
larly to [Teschner et al. 2003]. In our simulation, collision detection
took less than 10% of the total computational time, and thus never
appeared to be the computational bottleneck in our simulations. See
Section 5.3 for the detailed performance.

vergence. In practice, the range of simulations that we are inter- 5. RESULTS

ested in mostly fall into the favorable case, namely the case when

the criterionn < 1 is roughly satis ed. Provided the time step is
chosen small enough (to overcome the dif culty whi&f is non-

In this section, we accurately analyze our method in terms of 1)
realism (i.e., its ability to capture relevant emerging phenomena),

smooth close to the current iterate), convergence with reasonable?) numericaktability (i.e., its convergence properties), and 3) com-

speed will then be observed. Actuallycan be viewed as a condi-
tioning number for our simulations.

putationalef ciency (i.e., its time performance). Limitations and
discussion are provided in the next section.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication eaionth YYYY.



5.1 Realism: capture of relevant physical properties

5.1.1 Contact robustnessFigures 2 (left), 6, and the accompa-

nying video demonstrate the ability of our method to address the

challenging scenarios of plectoneme formation and tight knot ty-

ing. Because of the slender geometry of a thin rod, simulating self-

contact and especially the formation of plectonemes or tight knots

requires an extremely robust algorithm for contact. Unlike basic

penalty-based approaches which fail to prevent interpenetration be-

yond a certain force/torque magnitude and thus may cause the self-

crossing of the rod, our constraint-based algorithm robustly main- i 7. pense packing of 31 spaghetti in a plate. Top: witfdetion (m=
tains contact whatever the amplitude of the force/torque applied o) the rods just spread out over the plate. Bottom: in thespressof friction
onto the free end of the rod. With our method, the violation of con- ;= 0:3), the rods stack in a stable way.

straints is prevented whatever the magnitude of the applied forces.

5.1.4 Complexinteractions in hair dynamic&Ve have tested our
method to resolve interactions in hair dynamics in the presence of
friction. Figures 2 (right), 8, and the accompanying video show a
wavy head of hair under motion where thin wisps are modeled as
84 contacting Super-helices, in the presence of frictioa (0:3) or
not (m= 0). Compared to previous approaches, our method is the
rst to properly capture subtle hair contacts occurring between hair
curls, thus correctly preserving ttair volumeas well as captur-
ing stickingandcoherence of motioim the presence of friction. In
Figure 8, observe how hair wisps get entangled, forming complex
and discontinuous patterns. On the right, note how friction plays a

Fig. 6. Interactive making of a knot from a Super-helix of 28raénts ! . ¢ . _ e T ¢
major role in the realism of motion: without friction, hair wisps just

(m= 0). With our method the user can tighten the knot as stronglyeas

wants, without causing contact to break. s : ) AY¢e e - m
ence of friction, typical stick-slip instabilities (especially visible on

the shoulder of the character and on top of the head) occur.
5.1.2 Capture of dynamic and static frictionThe accompanying
video shows the effect of increasing the coef cient of frictioron
the simple example of a strand contacting a rotating sphere. When ,, _
mis large enough, dry friction is captured as expected. In the knot
example, the user can easily perceive the in uencengfhen vir-
tually tying a knot: in the absence of friction this task is actually
challenging since contact points are always sliding and thus cannot
guide the user. With a nonzero friction coef cient however, static
friction occurs and greatly helps the user as it maintains some xed
points of contact that can be used as pivots.

The typical stick-slip instabilities occurring inside ber assemblies
are illustrated in the following examples. n=03

5.1.3 Packing of bers. We have simulated the fall of a dense

packing of 31 parallel spaghéttimodeled as mass-spring chains

with both ends free) on to a plate. Figure 7 and the video show the

effects of varying the friction coef cient. In the case where there

is no friction, the rods spread over the plate. When friction is ac-

tivated between the rods and the plate, but not between the rods,

the spaghetti form a stack but continue to slide against each other.

When friction is active everywhere, the stack is higher and remains Fig. 8. Simulating frictional contact in a full head of hair4(8imulated

perfectly still. strands). Top: without frictionfo= 0). Bottom with friction (n= 0:3). On

In a second experiment depicted in the video, we have simulated every picture, observe the retrieval of a realistic haiunoé as well as the
a bunch of 7 spaghetti asd®DE rods with a straight shape at  presence of discontinuous patterns caused by the propéngalf self-
rest, but initialized with a nonzero curvature. After impact, the rods contacts. Left: during motion, hair subject to friction (towh) exhibits less
tend to recover their natural straight shape when there is no fric- volume than the frictionless case (top) due to an enhanceerente of
tion, whereas they remain curved in the frictional case as tangential motion. Right: at rest, when friction is applied (bottom), sohadr wisps
friction forces compensate for elastic forces. remain stuck over the shoulder thanks to the correct modefirigyofric-
tion, whereas unnatural sliding occurs in the frictionlesse (top). Observe

the hair wisps that rest on top of another hair layer, simjilagd in Figure 1.

5As a matter of interest, modeling and animating spaghetti wasamu . .
See also the accompanying video.

ingly listed by Blinn [1998] as one of the top 10 unsolved peohs in
computer graphics.
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5.1.5 Contact in rigid bodies.In order to explore the versatility

of our method we have attempted to solve frictional contact within
other dynamic systems, such as rigid bodies. Figure 9 illustrates the
loop benchmark (introduced by Kaufmatal. [2005]), extended

to a double loop, where a ball rolls over two raits< 2) with a
curly shape. The ball initially has some spin, but no translational
velocity. Increasing the friction coef cient reduces sliding phases
in favor of pure rolling (adherence), which causes the ball to go
further through the looping rails (see the accompanying video).

Fig. 9. Real-time simulation of a ball in a double loop. The liilially
has some spin, and different friction coef cients betweea Itiall and the
rails are tested. When friction is high, the spin energy isveded into
translational kinetic energy, which makes the ball roll tigb the loops.

In this simple example, convergence is very fast (less than 5 itera-
tions) even when using a large time step (11 ms). However, as we

shall see in Section 6.2, our method may not be adapted to handle a

set of rigid bodies with stacking as the conditioning of the method
will rapidly decrease due to the large number of contacts compared
to the low number of degrees of freedom of the system (see also
next section).

5.2 Stability: a criterion for fast convergence

We have carefully analyzed the convergence properties of our al-
gorithm on a spaghetti simulation consisting of 76 exible rods

(modeled as mass-spring chains composed of 22 nodes with both

ends free) subject to external contacts (with a plate) as well as self-
contacts, in the presence of frictiomE 0:3). After a series of
impacts, the assembly of rods rapidly stabilizes as expected, form-
ing a stack subject to more than 1800 contacts (see Figure 2, right,
and the accompanying video).

To evaluate the quality of convergence of the solver, we have plot-
ted the time required for the solver to converge as a function of the
numbern = 29 introduced in Section 4.4. In this particular case,
d=3andm=76 22 3= 5016, thusn= 1i-, wherenis the
total number of contacts. Figure 10, top, gives the results of this
plot. It clearly shows the in uence af on the rate of convergence
and identi es that the valua = 1 critically de nes a threshold for
proper convergence: when the criteriox 1 is satis ed, conver-

most cases to the desired precision (here, xed to®)0even when

nis slightly superior to 1. Convergence occurred in roughly 100 it-
erations on average (the maximum number of iterations was set to
200). In 10% of the cases we studied, the solver did not strictly
reach the required precision. Note however that the saliveays
converged to an acceptable solution, close to the target value 0 (the
maximum recorded error was only of 19). In then < 1 zone, we
noticed that the solver happened to converge to such approximate
solutions in situations involving large impacts (typically, when the
spaghetti collide with the plate at maximum speed). We strongly
suspect this issue may be due to the lack of a proper warm start in
such cases, as contact forces and post-impact velocities are initial-
ized with zero values when new contacts are set active. The solver
thus starts from a con guration that is far from the solution when
impacts are large, causing the Newton algorithm to fall into some
local minima. In the near future, we plan to investigate how to prop-
erly estimate an initial guess of the solution in the speci c case of
impacts, based on the knowledge of relative velocities before im-
pact. We note however that in all cases, such an approximate con-
vergence did not produce any visually disturbing effects nor did it
cause the solver to fail in the following time steps.

convergence time
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Fig. 10. Analysis of convergence for the 76 spaghetti demp: Gonver-
gence time of the solver (in seconds), as a function.dBottom: relative
density of the convergence error of the solver (measurdd4%?), as a
function of n. The tolerance error is set to 19in our internal, dimension-
less units. The dense zone inside the rectangle (in which enastvalues

gence remains reasonably fast, whereas it grows exponentially asconcentrate) is zoomed on the right to better depict the tledistribution

soon asn > 1. In practice, we have noted that the solver almost
always manages to converge untireaches a value close to51
however, the time taken to converge grows largenascreases.
Figure 10, bottom, displays the relative density of convergence er-
ror as a function of. It is noticeable that the solver converges in

of error values (represented as greyscale values). Ndtethet error values
lie beneath the tolerance.

We have plotted similar data for other rods experiments, and exactly
observed the same properties for the convergence of the solver, as
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depicted in Figure 11: the solver quickly converges to a solution
whenn < 1, whereas convergence still occurs foslightly supe-
rior to 1 (but is slowed down), and nally the solver fails to con-
verge when the criterion is far from being satis ed (typically, when
n> 1:5). This result con rms the observation previously made by
Cadoux [2009] in the context of simpler experiments with a lower
number of contacts, and enhances the factithatys the role of a
generic condition number.

In addition, by comparing the results obtained on different simula-
tions, we have observed that for a constanthe time of conver-
gence grows as the numberf contacts increases. Actually, the
convergence time pro le as a function nfobserved for two differ-

11

5.3 Performance

Although time performance was not our primary goal, it turns out
that our method is fast enough to be used for handling hundreds of
frictional contacts within a few minutes per frame. This is mainly
due to our sparse implementation of the algorithm, which is all the
more valuable as the number of contacting strands is high. How-
ever, computational time quickly becomes the main bottleneck of
our simulations, which currently limits the use of our technique to
systems subject to a few thousands contacts.

All the simulations presented in the paper as well as in the ac-
companying video were processed on a single threaded application

ent simulations appears to be the same up to a scaling factor relate¢unning on an Intel Core 2 Duo CPU at 2.1 GHz. Table | gives a

to the mean number of contacts (see Figure 11).

Finally, although our problem is nonsmooth, we observe typical
Newton quadratic convergence in some favorable cases where
high precision kf~°k? < 10 18) is reached by the solver. This is

for example the case for the simple simulation
ure 9, where the solver reaches a precision 0f320n less than

resented in Fig-

summary of our computational results. The indicated mean compu-
tational time is based on computations during one elementary time

Step, including the dynamics of thin rods, collision detection and

collision response. For large systems>( 100) the computational
time taken by our solver represents 80% to 90% of the total com-
putational time, depending on the rod model used.

5 iterations, at each time step! This observation is actually in line For every simulation, we used a tolerancekdf°k? of 10 5 in di-

with the theoretical study made by Qi and Sun [1993] in the non-

mensionless unitd.g, physical quantities were divided by typical

smooth case (though they make more restrictive assumptions tharvalues of the rods system, in order to bring matrices coef cients

we do). close to 1), which in practice corresponds to a good trade-off be-
tween visual accuracy and computational Bogie chose the time
convergence time (spaghetti 31/16) step between:@ and 11 ms, depending on the rod model used. Typ-
ically, the CorRDE model, based on an explicit integration scheme,
10 required a smaller time step to remain stable, compared to other
9l rods models.
8t . . .
21 Table I. Performance results for our simulations on various models
6l composed oNs rods and\ elements (or nodes) per rod.
5| Rod Example Ns, Ne) m dt n n mean
. model (ms) || max | max | time (s)
I SH Plectoneme (1, 20) 0 11 18 0.9 0.04
3r SH Tight knot (1, 20) 0 11 8 0.4 | 0.033
2y SH Wavy hair (84, 8) 0 11 392 | 0.58 2.6
1r i SH Wavy hair (84, 8) 03| 11 380 | 0.57 | 41.2
0 AR : : v C Self-stacking (1, 256)| 0.3 | 0.25 || 303 | 1.18 | 0.31
0 02 04 06 08 1 1214 C Spaghetti (7, 16) 03] 01 121 | 1.08 | 0.36
. . MS Spaghetti (31, 16 03| 1 653 | 1.32| 2.26
convergence time (spaghetti 76/16) MS Sgaghetti §76 22; 03| 1 1806 | 1.08 | 19.1
20 SH: Super-helix; C: ©RDE; MS: Mass-spring.
35+
30
6. DISCUSSION
25+
20l In this section, we provide comparisons with previous methods and
Lt discuss the strengths and current limitations of our approach.
15 "
1oy L 6.1 Comparison with previous methods
5 L Lot . ;%&
0 i e W‘ﬁ - v 6.1.1 Smooth friction modelsOur results clearly demonstrate

Fig. 11. Comparison of the solver convergence time pro le @oands)
between 2 different simulations: 31 mass-springs of 16 nawes (s 76
mass-springs of 16 nodes (bottom). Note that the pro les andai up to
a scaling factor directly related to the mean number of cositact

the advantage of using a nonsmooth solver. Dry friction is indeed
a predominant phenomenon in contacting rods systems. Classical
methods based on viscous friction would typically not be able to

SAlternatively, a relative non-square error measure such as%

could be used. In our experiments, we have measured that odrtd@r-
ance is equivalent to a maximal relative erroresf 10 3.
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recover the stick-slip effects depicted by our simulations. Hair is the non-monotonicity of the convergence of the error with the num-
a crucial example where previous modedgy([Plante et al. 2001; ber of facets compared to the original second-order friction cone.
Bertails et al. 2006; Hadap 2006; Selle et al. 2008; McAdams et al. As an illustration, a simple example of this issue where a sphere
20009]) fail in capturing this typical, nonsmooth behavior. on a table is controlled by forces to draw a triangle is presented
in [Acary and Brogliato 2008, Sec. 13.3.7]. Such a lack of preci-

sion may especially be disturbing for critical applications such as

proaches have attempted to modify Coulomb's friction model so as Naptics or virtual prototyping. The second drawback of faceting the
to stick to an easily solvable contact formulation [Milenkovic and Tiction cone is the poor numerical ef ciency beyond 1000 con-
Schmidl 2001; Kaufman et al. 2005]. In [Milenkovic and Schmidl @cts. In most favorable cases, a pivoting me.thodg for an LCP such
2001] Coulomb’s friction model is adapted to tinto the quadratic &S Lemke’'s method is empirically of complexi(n”) wheren is
program (QP) framework for resolving non-penetration. Frictional th€ number of unknowns. When the number of facets increases at
impacts are treated by restricting contact impulses to the linearized ea_ch contact point, the number of unknowns grows Ilnearl_y leading
Coulomb friction cone, while resting contact is modelled by en- 9UicKly tointractable problems. Last but not least, one major draw-
forcing the relative acceleration to lie in the dual linearized fric- Pack of the faceting approach is the dif culty of its implementation,

tion cone and by subsequently projecting boundary-located accel-compared to a straightforward Newton method.
erations onto the tangent space. While the former formulation is
a reasonable approximation of Coulomb's model at impacts (see 6.1.4 Global and local approachesOur contact algorithm at-
6.1.3), the latter is more questionable: objects have to reach a certempts to compute the contact forces by changing all forces at all
tain normal acceleration before they are allowed to take off, which contact points simultaneously. It can solve, in particular, problems
appears to be unphysical. Moreover, the authors do not fully resolve involving only one contact, and this property can be used to devise
the resulting QP but rather stop after a few iterations only, with no another algorithm for the same problem, which solves a local prob-
bounded tolerance. Kaufmaet al. [2005] derive an approxima-  lem contact-per-contact and loops over all contacts. This method is
tion of Coulomb friction based on the maximum dissipation prin- often called “Gauss-Seidel” due to its resemblance with the Gauss-
ciple, leading to the formulation of two separable QPs. Similarly Seidel algorithm to solve linear systems. The main interests of this
as in [Milenkovic and Schmidl 2001], the problem is only partially algorithm are its good scalability.r.t. the number of contacts, and
solved for the sake of ef ciency, using a limited number of itera- the fact that it may be able, in some cases, to solve massive stack-
tions regardless of any convergence error. ing problems of systems with a low number of degrees of free-
. ) ) dom. Actually, this method requires very little implementation once
Such simpli ed methods are appealing due to the fact they may the global method is available. In our rods experiments however,
scale favorablyw.r.t. the number of contacts. In [Kaufman et al.  this method did not necessarily prove faster nor more robust than
2005] computational time grows linearly with the number of con-  the global method: the method suffered from slow convergence to-
tacts, which allows them to simulate a large number of rigid bodies yether with cycling issues and sometimes failed to converge even
subject to tens of thousands of contacts, in a reasonable amount of;, the favorable case where < 1; moreover, its stopping crite-
time. In contrast, due to its higher complexity, our approach is cur- yion is |ess clear since there is no parameter (such akBk?)
rently limited to the handling of a few thousand contacts. However, \hich monotonically controls convergence. As a consequence, we
simpli cations made on Coulomb friction and on the accuracy of 54yocate the use of the global method when the criterien 1
resolution have a price to be paid, in terms of physical realism and g roughly satis ed (which was typically the case in our experi-
stability: with our solver, as illustrated on the spaghetti and hair de- ments), and of the local approach otherwise (typically, in the case

mos, all contacting systems remaarfectly stillwhen they have 4t gensely packed bers or nonconvex rigid bodies stacking).
come to rest, as one would expect. This is hardly achieved by the

simulations presented in [Kaufman et al. 2005].

6.1.2 Ad-hoc, visually acceptable friction modelSome ap-

6.2 Limitations and future work

6.1.3 Faceted Coulomb's friction coneThe current trend in

graphics to model Coulomb friction consists of solving an LCP As mentioned above, our global approach is not adapted to over-
generated by linearizing the Coulomb friction cone [Erleben 2007; constrained systemsg., systems where the number of degrees of
Kaufman et al. 2008; Otaduy et al. 2009]. The main advantage freedom is low compared to the number of contacts. This is typi-
of this approach is a theoretical result due to Stewart and Trin- cally the case in assemblies of rigid bodies. Note that in Figure 9
kle [1996], which both provides a criterion for the existence of we haved = 3,m= 6 andn= 2, which makes this example fall into

at least one solution, and proves its computabiity a pivoting the favorable case where= 1. However, the criterion is generally
technique such as the Lemke algorithm. While using an alternative not veri ed in stacking systems of rigid bodies. Take for example
technique —based on staggered projections — Kauthah[2008] a pile of cubes in 3d: if the number of contacts per cubeds4,

also report good convergence properties, even when using a verythenn = 2 and the criterion is not satis ed. Even after Itering
low convergence tolerance (down to ) compared to a 10 tol- the number of active contacts at the collision detection stage (lead-
erance said to be “suf cient to generate convincing frictional be- ing to at least 3 contacts per facae)would still be out of range. In
havior”). Note that such quantitative measures of convergence arepractice, we indeed observed slow convergence and frequent occu
very sparse in the graphics literature when dealing with the fric- rence of large convergence errors when trying to simulate this kind
tional contact problem. of problem. The worst case is actually obtained when simulating

. . . rigid bodies (n= 6) with a high number of self-contacts: typically,
The faceting process suffers from a number of issues. Firstly, the ooncave and convex rigid bodies that get entangled.

faceting introduces an arti cial anisotropy in the sliding plane

yielding some artifacts in the mechanical behavior of the whole Our convergence criteriom< 1 is de ned independently from the
system. This induced anisotropy is generally dif cult to avoid and parameterization of the rod model used in the simulations. How-
to forecast with respect to the number of facets. The main reason isever, this criterion is obviously more favorable to systems whose
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kinematics is loosely de neds.g, computed through energy func-  Acary, V., CaDoux, F., LEMARECHAL, C.,AND MALICK, J. 2010. A
tions (penalization terms) rather than hard constraints (reduced- formulation of the linear discrete Coulomb friction probleia ¢onvex
coordinates or explicit hard constraints), since loose kinematics do  optimization.ZAMM / Z angew Math Mech; Zeitschriftif Angewandte
not exactly remove degrees of freedom. However, in the case of de- Mathematik und Mechanik

formable bodies, one acceptable solution may consist in increasingaLart, P. AND CURNIER, A. 1991. A mixed formulation for frictional
the I'eSO|uti0n Of the mOdel at |Ocati0ns Where the numbel’ Of con- contact pr0b|ems prone to Newton like solution methdﬂxnput. Meth-
tacts is high. Note that if this is required in order to get good prop-  ods Appl. Mech. Eng. 93, 353-375.

erties of convergence, this is also often desirable for increasing theBARAFF’ D. 1989. Analytical methods for dynamic simulation of non-

quality of Si.mulation, as high deformations are likely to occur near penetrating rigid bodies. I@omputer Graphics Proceedings (Proceed-
the contacting zones. ings of the ACM SIGGRAPH'89 conferencd)CM, New York, NY,

In the future, we would like to better address the dif cult case ~ USA, 223-232.

where a high number of contacts is applied onto deformable ob- BARAFF, D. 1993. Issues in computing contact forces for non-petiegra
jects without causing high deformations (such as a straight rod, rigid bodies.Algorithmica 10 292-352.

with a low number of degree of freedom, lying on a at surface): Bararr, D. 1994. Fast contact force computation for nonpenetratiig

in this case, it would of course be preferable to model the rod us-  bodies. InComputer Graphics Proceedings (Proceedings of the ACM
ing a low number of degrees of freedom (for instance, reduced- SIGGRAPH'94 conferencéCM, New York, NY, USA, 23-34.
coordinates), which for the moment would be hardly solvable by gararr, D. AN WiTkIN, A. 1992. Dynamic simulation of non-
our approach in the case when a high number of contacts is applied. penetrating exible bodies. IIComputer Graphics Proceedings (Pro-

Our goal would be to nd a global approach that scales better in  ¢eeqdings of the ACM SIGGRAPH'92 conferen@83—308.
ertes than classical Gauss-Seidel ke approaches, We noto that EARATT: D AND WITKIN, A. 1098, ~Large sieps in cloth simul:

- pp o . . tion. In Computer Graphics Proceedings (Proceedings of the ACM SIG-
the speci ¢ case of dense structured stacking of rigid bodies with a .

. GRAPH'98 conference}}3-54.
faceted Coulomb cone, Erleben [2007] proposed a heuristic based ) » o
on velocity-shock propagation to accelerate the rate of convergenceBARB!C. J-AND JAMES, D. 2007. Time-critical distributed contact for 6-
of the Gauss-Seidel algorithm. In the same spirit, exploiting the pe- 90f haptic rendering of adaptively sampled reduced deforenatuldels.
In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07)

culiar structure of a dense packing of bers may help us design a X = } X .
dedicated, optimized iterative scheme that would properly scale up Eg(r)ographucs Association, Alre-la-Ville, Switzerlandyerland, 171~

for the ef cient handling of thousands of bers in contact.
BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B., AND

GRINSPUN, E. 2008. Discrete elastic rod&CM Transactions on Graph-

7. CONCLUSION ics (Proceedings of the ACM SIGGRAPH'08 conference821-12.

BERTAILS, F. 2009. Linear time super-helicésSomputer Graphics Forum
We have introduced a new method for computing self-contacts in  (Proceedings of Eurographics'09) 28,(apr).
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APPENDIX

EQUIVALENCE BETWEEN DISJUNCTIVE AND
ZERO-FINDING FORMULATIONS FOR COULOMB'S
LAW

We show here how to prove the equivalenger) 2 C |
f2(u;r) = 0 where fA°(u;r) is the Alart-Curnier function de-
ned by equation (4). This can be easily achieved by consider-
ing each case separately. Let us rst demonstrate (bat) 2

C) [fiSfl(w;r) = 0. In the taking off caser = 0 and
Uy O therefore R+(ry ryuy) = Pr+( ryuy) = 0= ry and
R0, mry) (Tt rrUr) = Fog)(::1) = 0= ry. In the sticking case,
u= 0 andr 2 K therefore B+ (ry rnyuy) = Pr+(ry) = ry and
R0, mry) (T FrUr) = Rg(o;mry) (Fr) = rr. Finally, in the sliding
case, B+ (ry  rnuy) = Br+(ry) = ry (becausen, = 0 andry  0)
and %(o;mrN)(fT rru;) = ry (becauser; 2 K and rqu; 2

NB(0; rmry) (F7)-
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Conversely, if f3<; f4°1(u;r) = 0, let us show thatu;r) 2 C holds.
As f2(u;r) = 0 one hasr; 2 B(0; nry) thereforer 2 K. As
fi€(u;r) = 0, one hasy, 0 and we treat the two cases= 0
(*) andry > 0 (**) separately. Ifry = 0 (*) thenr = 0 (because
= B, mry)(Fr I'rlr) = Reo)(:::) = 0)anduy O (because
0=ry= Pg+( ryuy)) and one is in the taking of case.rlf > 0
(**)thenry= Br+(ry  ryuy) = ry  ryuythereforeuy = 0. Again
two different cases appear:2 int B(0; mry) andr; 2 1B(0; mry).
In the rst caser; = P(_:,(O;WN)(rT rtu;) = ry  r.U; therefore
u; = 0, this corresponds to the sticking case. In the second case,
r 2 1K andu; 2 NB(O;mrN)(rT) therefore9a > 0; r; = au, this
is the sliding case. This ends the proof.

B. JACOBIAN MATRIX OF FUNCTION G

Distinguishing between three cases, the following formulas are eas-
ily derived.

If kyk< I, theng(/ ;y) = v 320139 = 02 1; J2(13y) = 12

If kyk> | > 0, theng(/ ;y) = | s 201 5y) = i B0y =
/ .

wxlls &)

If kyk> 0> [, theng(/ :y)= 0y 1; %(/ )= 02 1; ;773(’ )=
0 2:
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