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Figure 1: Our inversion method makes the hair synthesis pipeline consistent: (a) Raw hair geometry (a set of polylines) resulting from the
manual design or the automatic capture of a static hairstyle (here, a capture from [Herrera et al. 2012]); (b) Input geometry is automatically
converted into a dynamic hair model (a set of super-helices) at equilibrium under gravity and frictional hair-body and hair-hair contact forces;
Unlike classical hair simulators (c) which ignore surrounding forces when initializing the hairstyle and are thus prone to undesired sagging,
our simulator (b) exactly matches the original hair geometry at initial state and (d) yields a realistic, character-specific hair animation.

Abstract

In the latest years, considerable progress has been achieved for ac-
curately acquiring the geometry of human hair, thus largely improv-
ing the realism of virtual characters. In parallel, rich physics-based
simulators have been successfully designed to capture the intricate
dynamics of hair due to contact and friction. However, at the mo-
ment there exists no consistent pipeline for converting a given hair
geometry into a realistic physics-based hair model. Current ap-
proaches simply initialize the hair simulator with the input geom-
etry in the absence of external forces. This results in an undesired
sagging effect when the dynamic simulation is started, which basi-
cally ruins all the efforts put into the accurate design and/or capture
of the input hairstyle. In this paper we propose the first method
which consistently and robustly accounts for surrounding forces —
gravity and frictional contacts, including hair self-contacts — when
converting a geometric hairstyle into a physics-based hair model.
Taking an arbitrary hair geometry as input together with a corre-
sponding body mesh, we interpret the hair shape as a static equilib-
rium configuration of a hair simulator, in the presence of gravity as
well as hair-body and hair-hair frictional contacts. Assuming that
hair parameters are homogeneous and lie in a plausible range of
physical values, we show that this large underdetermined inverse
problem can be formulated as a well-posed constrained optimiza-
tion problem, which can be solved robustly and efficiently by lever-
aging the frictional contact solver of the direct hair simulator. Our
method was successfully applied to the animation of various hair
geometries, ranging from synthetic hairstyles manually designed
by an artist to the most recent human hair data automatically recon-
structed from capture.
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1 Introduction

Realistically synthesizing the shape and motion of hair is crucial for
representing convincing virtual humans. In the two related fields of
Computer Graphics, namely hairstyling and hair animation, con-
siderable progress has been achieved these latest years. Yet, these
two areas of research have remained fairly disconnected from each
other. For the sake of flexibility and control, hairstyling is gen-
erally performed using a purely geometric process, either through
the interactive editing of geometric primitives, or, more recently,
with the help of automatic image-based capture methods. Result-
ing hairstyles are then represented as raw geometric data, with no
connection to physics. In contrast, hair animation is often consid-
ered as a passive and complex phenomenon that can be captured
realistically using physics-based simulation. Before simulation, the
hairstyle is generally initialized with a rest pose in the absence of
external forces and is typically prone to sagging when the simula-
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tion is started (see Figure 1(c)). Such a sagging effect considerably
limits control over the static hair shape; in particular, it prevents
the simulator from accurately matching an input geometry at ini-
tial state. As a result, there exists nowadays a lack of compatibil-
ity between, on the one hand, the most realistic hairstyles that can
be created or captured, and, on the other hand, the initial input of
the most advanced simulators for animating hair. In this paper we
present the first approach that consistently and robustly bridges this
gap. The core of our method amounts to formulating and solving an
inverse problem, which allows us to interpret raw hair geometry as
plausible physical data. More precisely, our method automatically
retrieves the hair physical parameters such that the input hairstyle
geometry corresponds to a static equilibrium of hair under external
forces, including gravity and contacts.

Preserving details Real hairstyles often consist of many thin
distinctive features — typically, individual hair fibers or thin strands
with a peculiar orientation and shape — which fully characterize
the visual appearance of hair and play a key role in the person’s
identity. Most advanced hair designing tools or image-based re-
construction systems now allow one to capture those features into
detailed digital hairstyles. Such details are important to be pre-
served accurately during the inversion process so as to generate a
faithful, character-specific hair simulation. Recent digital hairstyles
are often represented as a large set of 3D geometric curves with ar-
bitrarily curved shape, each one of them standing for a single hair
fiber or a strand [Paris et al. 2008; Herrera et al. 2012; Luo et al.
2013]. To match such a thin geometry accurately at the initial time
step of a dynamic simulation, it is natural to model hair physically
using individual 1D deformable structures. In practice we use up to
a few thousands thin elastic rods, modeled as super-helices [Bertails
et al. 2006], to represent a collection of guide strands. Our inver-
sion method is however generic and could accommodate any other
rod model accounting for arbitrary hair curliness [Spillmann and
Teschner 2007; Bergou et al. 2008].

Inversion with contacts The key point is to consider that each
raw geometric curve intrinsically encodes, within its own shape,
all surrounding forces; typically, gravity, but also frictional con-
tact. While gravity is known, frictional contact forces — which en-
compass tens of thousands hair-body and hair-hair contact forces
— are not. Accounting for gravity while ignoring the effect of
contact forces considerably reduces the complexity of the prob-
lem [Derouet-Jourdan et al. 2010], but is not an acceptable option
in the case of hair. Indeed, as illustrated in Figure 2 (b), considering
that the intrinsic geometry of hair is due to gravity solely tends to in-
crease artificially the rest curvatures of the physical model, making
subsequent animation overly stiff. In contrast, in this paper we aim
at properly accounting for frictional contact during the inversion
phase. For stability and accuracy purposes, we furthermore choose
to model frictional contact using unilateral constraints, accounting
for non-penetration as well as exact Coulomb friction [Daviet et al.
2011]. We are thus faced with a large, underdetermined and non-
smooth problem. Proposing a suitable, accurate and efficient so-
lution to this challenging problem is the key contribution of our
paper. To achieve this, we reasonably assume that the hair physical
parameters (linear mass density, stiffness and friction coefficients)
take typical values for hair, and that contact forces, which partly
support the equilibrium, cannot be excessively large. We further-
more consider that the hair intrinsic curliness (straight, wavy, or
curly rest shape) can be roughly estimated from the input geome-
try. Thinking of this estimation as a target, we formulate the inverse
problem as a well-posed convex second-order cone quadratic pro-
gram (SOCQP) whose unknowns are the frictional contact forces.
Interestingly, this SOCQP can be solved robustly and efficiently by
leveraging the solver from [Daviet et al. 2011], originally designed
for the direct problem with frictional contact.

(a)

(b)
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Figure 2: Dynamic simulation of an artistic hairstyle after three
different static inversions: an inversion accounting for gravity
only [Derouet-Jourdan et al. 2010], without (a) and with (b) sta-
bilization, and our inversion method accounting for gravity and
frictional contact forces (c). All three methods exactly match the
input style at first frames, when the character is still (left). How-
ever, inversion (a) produces a very unstable hair configuration
which causes the loss of the groom right at the beginning of the
motion, while the stabilized version (b) requires a large stiffness
(E = 60GPa on average) and leads to an overly stiff animation,
where hair hardly deforms. In contrast, our method (c) remains
stable with a reasonable hair stiffness value (E = 4GPa) and yields
plausible animation results.

2 Related Work

Realistic hair synthesis has drawn the interest of computer scien-
tists since the 90’s, and there is now a large body of research on
this topic [Ward et al. 2007a]. While photo-realistic hair render-
ing is now achievable provided enough computational resources are
available, the realistic modeling and animation of hair remain very
challenging issues and are still subject to active research. In the
sequel we discuss the most relevant works of the latest years with
respect to these two areas of research.

Geometry-based hairstyling Most of the hairstyling methods
developed so far are purely geometric. They rely upon the creation
and editing of simple geometric primitives, such as splines, so as to
allow a user to carve directly the shape of hair as precisely as de-
sired. Given the complexity of the hair geometry, a number of tech-
niques has been proposed to offer the user interactive and intuitive
carving tools. While some models structure hair into large wisps
often represented as generalized cylinders [Yang et al. 2000; Kim
and Neumann 2002], others view the visible part of hair as surface
patches [Koh and Huang 2000] which can be further refined to cre-
ate intricate styles [Yuksel et al. 2009]. At the final stage, textures or
individual fiber geometries are added to produce the rendering out-
put. To enhance visual realism, some authors have also developed
physics-inspired tools allowing users to automatically add natural
waviness or randomness to hair [Hadap and Magnenat-Thalmann
2000; Yu 2001]. Still, the digital creation of a complex hairstyle
remains a lengthy process which definitely requires artistic skills.



Recently, considerable progress has been achieved towards the fast
and accurate digital creation of real 3D hairstyles, thanks to the
emergence of automatic image-based capture approaches [Kong
et al. 1997; Grabli et al. 2002; Paris et al. 2004; Wei et al. 2005;
Paris et al. 2008; Jakob et al. 2009; Herrera et al. 2012]. Unlike
geometric editing techniques, the output amounts to a set of raw
large unstructured data containing tens to hundreds of thousands
3D curves. Very recently, some authors proposed some hierarchical
structured hair synthesis frameworks in order to edit a hair capture
interactively [Wang et al. 2009] or to extract relevant hair features
from the reconstruction process [Luo et al. 2013].

From this whole body of work, a large bunch of realistic, detailed
hair geometries is now available in the Computer Graphics commu-
nity. There is a great temptation to animate them, edit them physi-
cally, or even do some reverse engineering to retrieve hair physical
properties. However, as the design/acquisition was processed with
no connection to physics, output data cannot be interpreted straight-
forwardly as the result of a physics-based process.

Physics-based hairstyling To circumvent this issue, an alterna-
tive is to style hair directly in a plausible physics-based environ-
ment, as in a virtual hair salon [Lee and Ko 2001; Bertails et al.
2005; Ward et al. 2007b]. The advantage is that the dynamics of
the hairstyle can then be run consistently at any time of the process,
since gravity is already set active during hairstyling. However, as
interactivity is desirable for the hairstyling step, in practice the user
may use very few physics-based primitives combined with a drastic
approximation of hair self-contact, which obviously limits the rich-
ness of the hairstyles that can be created. Moreover, even though
some sketch-based interfaces were designed to alleviate the task
of the user [Wither et al. 2007], a physics-based hairstyling process
based on indirect operations, such as hair cutting or frizzing, may be
tedious and lack intuitiveness. An artist who has a precise hairstyle
idea in mind will definitely prefer the flexibility and control of-
fered by geometric methods. Furthermore, accurately reproducing
a real hairstyle through costly and hardy controllable physics-based
styling tools would be, even for an expert, impracticable.

Hair animation At the other end of the hair synthesis pipeline,
a number of works has been devoted to the realistic animation of
hair. While some early methods have focused on hair keyframing
animation [Koh and Huang 2000], most recent techniques have at-
tempted to simulate hair using a physics-based model accounting
for the law of mechanics [Anjyo et al. 1992; Plante et al. 2001;
Hadap and Magnenat-Thalmann 2001; Chang et al. 2002; Bertails
et al. 2006; Hadap 2006]. Such simulations were for long limited
in complexity and resolution due to computational overhead. Re-
cently, some authors demonstrated that the simulation of thousands
guide strands subject to complex hair-body and hair-hair interac-
tions was now affordable on a standard desktop computer [Selle
et al. 2008; McAdams et al. 2009; Daviet et al. 2011].

One current limitation of hair physics-based simulation is the dif-
ficulty to initialize the model accurately with a sample geometry.
While artists take hours to model a precise hairstyle, and while cap-
ture systems are designed to get every single detail of a hairstyle,
those details are lost or severely altered when activating forces and
starting a simulation. Some research has been started already in
order to bridge this gap. Hadap [2006] and Derouet-Jourdan et
al. [2010] leverage exact inverse statics for fibers under gravity,
but consider only isolated (i.e., non contacting) fibers. Twigg and
Kačić-Alesić [2011] propose to reduce the sagging effect of mass-
springs systems (including hair) through nonlinear optimization. In
their approach, the net force applied onto each particle (including
internal elastic forces, gravity, and contacts modeled as penalty
forces) is minimized over the physical parameters of the system.
However, the minimum is not guaranteed to vanish, as this would

require the possibility for springs to have a negative rest length.
This means that the proposed formulation does not strictly enforce
the equilibrium of the resulting physical state, thus offering no guar-
antee that a true static pose will be recovered in the end. Further-
more, friction is not considered although it plays a crucial role in
the statics of hair. In addition, the optimization of repulsion radii
per particle for maintaining contact adds a significant cost to the
global optimization process. Even with a splitting strategy aimed
at solving elasticity and contact parameters separately, for hair sce-
narios similar to ours their paper reports hours of computations for
the optimization process to be completed.

In contrast, our inverse formulation ensures the retrieval of a per-
fect equilibrium configuration of a large collection of hair strands
subject to frictional contact, and is efficiently solved for. Typically,
in our tests no more than a few minutes are needed for inverting a
couple thousands contacting strands.

3 Contributions and Overview

To the best of our knowledge, computing the exact inverse statics
of a fiber assembly while taking frictional contacts (including self-
contacts) into account has never been tackled in the past. In this
paper we attempt to address this challenging issue.

We first explain how the input geometric data is preprocessed to
fit into our inverse static pipeline (Section 4). Then, relying upon
the nonsmooth mathematical framework, we introduce the inverse
static problem for a fiber assembly subject to frictional contact in
the general case (Section 5). Leveraging a few reasonable assump-
tions about the hair material, we reformulate the general under-
determined inverse problem as a well-posed convex optimization
problem, which can be solved efficiently and robustly using an ex-
isting frictional contact solver (Section 6). Finally, we successfully
apply our inversion algorithm to various input hairstyles — includ-
ing most recent hair captures — and show they can then be ani-
mated (or physically edited) in a consistent way (Section 7); further
improvements are also discussed so as to refine the accuracy of our
technique, before concluding.

4 3D Geometric Fitting

As previously mentioned, we choose to represent the hair geometry
as a set of 3D curves (stored as splines or polylines). This format
indeed corresponds to the standard output produced by hair design-
ing tools and recent hair capture systems. Furthermore, represent-
ing hair with curves is in line with the input of the most advanced
hair animation systems, which often simulate a discrete assembly
of guide strands [Hadap 2006; Selle et al. 2008; McAdams et al.
2009; Bergou et al. 2010; Daviet et al. 2011].

In order to invert a given hairstyle geometry, we first need to make
sure that the geometry is consistent and of reasonable size (Sec-
tion 4.1). Then, we have to convert this input geometry into the
strand geometry of the hair simulator: in our case, piecewise he-
lices (Section 4.2). Finally, to account for contact forces during
inversion, we need to infer the location of all potential contacts
(hair-body and hair-hair contacts) as precisely as possible, through
a geometric analysis of the input data (Section 4.3).

4.1 Suitable input geometric data

Our goal is to build a generic and robust inversion method able to
handle a wide range of hairstyles produced by external sources, ei-
ther through manual design or automatic capture. As far as possible,
we wish to avoid laying constraints on the input dataset. Neverthe-
less, a minimum set of desiderata is required to be able to interpret
the hair geometry consistently, as explained below.



Avoiding geometric discrepancies While artists naturally de-
sign a dense set of connected curves rooted on the scalp, automatic
hair capture systems are often aimed at reconstructing visible parts
of hair as accurately as possible, with no specific care for the geo-
metric consistency of individual fibers. Typically, a single hair fiber
may consist of many small disconnected curve pieces and/or may
not be properly attached to the scalp [Grabli et al. 2002; Paris et al.
2004; Jakob et al. 2009]. Such discrepancies may not be an issue
for rendering purposes, but clearly, they cannot be dealt with when
attempting to animate the hairstyle. Fortunately, motivated by re-
usability of data, some recent hair capture systems strive to generate
a dense and consistent set of hair curves which satisfy connectivity
and are properly attached to the scalp [Paris et al. 2008; Herrera
et al. 2012; Luo et al. 2013].

Pruning geometric data While a full head of hair is composed
of around 150,000 hair fibers, currently most realistic hair simu-
lators can only deal with a few thousands guide strands. In con-
trast, most capture systems attempt to reconstruct every single hair
fiber composing a full head of hair, thus resulting in too large an
amount of data (e.g., hair data generated by [Herrera et al. 2012]
are composed of around 100,000 curves). In such a case, we need
to keep only a representative subset of the original data. In practice
we simply randomly pick a few thousands hair curves among the
original data, preserving an even distribution of hair over the scalp.
Note that very recently, in the hair capture community some au-
thors strived to retrieve the structure of hair and provide as a result
a reasonably sized set of wisps centerlines [Luo et al. 2013].

4.2 Converting input curves into piecewise helices

To model arbitrarily curled hair strands with bending and twisting
elasticity, we choose to use the super-helix model [Bertails et al.
2006], parametrized by curvatures and twist. One advantage of this
model is that inextensibility is intrinsically preserved during anima-
tion with no need for adding any stiff stretch energy nor any external
constraint. Furthermore, it was showed that computing the (stable)
inverse statics (under gravity, without contacts) of such a model
is trivial [Derouet-Jourdan et al. 2010]. A non-trivial part how-
ever deals with the geometric fitting of the super-helix model. Un-
like low-order (segment-based) models whose centerline is a simple
polyline, the super-helix is supported by a G1-connected chain of
helical arcs. The geometric fitting problem thus amounts to fitting
a smooth piecewise helix of N arcs to an arbitrary 3D curve (the
input). To solve it accurately and efficiently, we use the floating
tangents algorithm which was initially introduced in 2D [Derouet-
Jourdan et al. 2010] and recently extended to the 3D case [Derouet-
Jourdan et al. 2013]. The key idea is to cut the initial curve into
N pieces and to interpolate tangents at joints with helical arcs by
slightly relaxing corresponding point positions. Once joint points
are set into a feasible configuration, the (unique) short helix inter-
polating two successive points along with their tangents is built by
leveraging Ghosh’s co-helicity condition [Ghosh 2010]. In prac-
tice, we used between N = 6 and N = 40 helical arcs for one input
curve, depending on its geometric complexity (see Section 7). The
maximum conversion time for a full hairstyle made of around 2,000
curves was less than 2 minutes on a standard desktop.

4.3 Detecting contacts from the input geometry

Because the input data represents a full head of hair rooted on a
character head and possibly falling upon the shoulders, it necessar-
ily encodes hair-hair and hair-body contacts. To retrieve the cor-
responding contact forces, a first (geometric) step is necessary to
find out where contacts are likely to occur. Before inverting the
hairstyle physically, we thus perform a collision detection pass in
order to collect the locations and normals of all possible contacts.

Hair strands are approximated with bounding cylinders of constant
width and we further assume that we have at our disposal, for each
hairstyle, the body mesh corresponding to the underlying character.
Using proximity queries and spatial hashing as in [Teschner et al.
2003], we can efficiently collect a plausible list of active contacts.

When experimenting with data however, we are faced with two
kinds of issues. First, input curves generated by an artist or re-
constructed from a real capture are generally not evenly distributed
inside the hair volume. Typically, the visible part of hair may be
more densely covered than the hidden part. This often results in a
thin empty layer just above the body mesh. In such a case, we use
a larger cylindrical approximation for the hair wisps close to the
body (in practice, 1 to 10 times as large as other wisps), in order
to correctly detect body-hair contacts. Second, for data generated
by hair capture systems, we could not always get access to a full
body mesh consistent with the data; and in the favorable case, only
the head mesh was available. Indeed, from a reconstruction point
of view, the only important part of the body that is worth recon-
structing carefully is the head, so that captured hair strands can be
rooted properly on the scalp [Herrera et al. 2012; Luo et al. 2013].
For our problem however, given that we consider long hairstyles,
having a full and consistent head-and-shoulders mesh is required.
In practice, each time the mesh of the original supporting body was
unavailable, we manually deformed and adjusted a virtual home-
made mannequin so that it roughly fits in with the input hairstyle.

5 3D General Inverse Statics

Let us consider an assembly of thin elastic rods with one end
clamped (onto the scalp) and the other end free. To simulate the
dynamics of this assembly realistically, we rely upon the recent
hair simulator of [Daviet et al. 2011]. This simulator accurately
accounts for dry (Coulomb) friction within hair, which is crucial
for capturing the typical nonsmooth patterns visible on the outer
surface of hair. Now, remember that our goal is to bridge the gap
between hairstyling and hair animation. More precisely, we wish
to initialize the hair simulator with our input hairstyle so that this
input data corresponds to a static equilibrium configuration of the
simulated hair under external forces. In other terms, we consider
the inverse problem which consists in enforcing the static configu-
ration of hair and retrieving the corresponding physical parameters.

After introducing our main notation (Section 5.1), we recall the
broad lines of the direct simulator (Section 5.2), from which we for-
mulate a general underdetermined inverse problem (Section 5.3).

5.1 Notation

As this is typically the case for natural hairstyles, we consider the
hair material to be homogeneous. The cross-section area S, volu-
metric mass ρ , inertia momentum I and Young modulus E of the
rods are thus assumed to be uniform (over each rod and over the
full hair volume).

The whole fiber assembly can be described as a finite Lagrangian
dynamical multi-body system with m generalized coordinates qqq.
Note that in the case of super-helices, qqq collects the discrete ma-
terial curvatures and twist of all rods composing the assembly. Fi-
nally, the qqq0 vector, collecting the generalized coordinates of the
rod at rest, i.e., in the absence of external forces, models the intrin-
sic curliness of the rod. We shall see in Section 6.1 how to make
reasonable assumptions regarding this quantity.

While we model here rods as super-helices, note that other rod mod-
els could be used. To make our exposition as general as possible,
we keep generic notation until Equation (3).



5.2 Direct dynamic problem with contacts

The nonsmooth equations of motion for a Lagrangian dynamical
system subject to contact forces and exact Coulomb friction (see,
e.g., [Acary and Brogliato 2008] for a comprehensive introduction)
were introduced to Computer Graphics in [Bertails-Descoubes et al.
2011; Daviet et al. 2011], and are briefly reminded here to the
reader. In the absence of contact forces, the dynamics of the system
is described as a smooth differential equation,

M (qqq)
dq̇̇q̇q
dt

+FFF(t,qqq, q̇̇q̇q) = 0

where M is the generalized mass matrix and FFF collects internal
elastic forces and external forces such as gravity, as well as nonlin-
ear inertial terms.

We now assume that the dynamical system is subject to n (external,
mutual or self) contact forces with Coulomb friction. The equations
of motion read1


M (qqq)

dq̇̇q̇q
dt

+FFF(t,qqq, q̇̇q̇q) = H (qqq)>rrr (1a)

uuu = H (qqq)q̇̇q̇q+uuu f (t,qqq) (1b)

∀i = 1 . . .n, (rrri,uuui) ∈ C (µ i,ei), (1c)

where rrr (resp. uuu) collects the n contact forces rrri (resp. the n relative
spatial velocities uuui) at contact points, expressed in the local con-
tact basis defined by the normal ei at contact i, H is the gradient
matrix of size (3n,m) relating the spatial velocities uuu to the gener-
alized velocities q̇̇q̇q, and uuu f represents the free spatial velocity of the
rod at contacts points, transmitted through clamped motion. Inclu-
sion (1c) abstractly represents the frictional contact law as a cou-
pling between each relative velocity uuui and each contact force rrri,
where µ i is the value of the friction coefficient at contact i. This
coupling, which makes the whole dynamical system nonsmooth,
includes for each contact the three possible states of the Coulomb
law: the taking-off case (when contact ceases and objects detach
from each other), the sticking case, sometimes referred to as static
friction (when there is no relative motion between objects in con-
tact), and the sliding case, sometimes referred to as dynamic friction
(when objects slide along each other while dissipating energy). Fol-
lowing De Saxcé and Feng [1998], this coupling can be formulated
compactly as a complementarity constraint for each contact,

∀i = 1 . . .n, K 1
µi
3 ũuui ⊥ rrri ∈ Kµ i , (2)

where ũuui is the modified velocity ũuui = uuui +µ i ‖uuui−uuui · ei‖ei, Kµ is
the second-order cone of aperture µ (the so-called Coulomb friction
cone), and K 1

µ

its dual cone (see Figure 3). Using Moreau’s time-

stepping method [Moreau 1994] and a root-finding equivalence
based on the generalized Fischer-Burmeister function [Fukushima
et al. 2002], Daviet and colleagues [2011] designed a robust and
efficient one-contact solver accounting for exact Coulomb friction.
This solver was then run iteratively (contact by contact) so as to
solve the full (nonsmooth and nonconvex) dynamic problem (1).
The global solver could successfully handle up to a few thou-
sands contacting rods (up to 50,000 contact points), in a reasonable
amount of time (a few minutes per frame).

1For simplicity we explicitly write the time derivative of the velocity,
but this is a misused notation. Indeed, because of contact constraints, the
velocity may not be differentiable. A rigorous way of writing the nonsmooth
dynamics is to use measure differential inclusions [Moreau 1994].

5.3 Inverse static problem with contacts

Let us now consider the static case, where q̇qq = uuu = 0.

Direct statics In the static case, System (1) and the friction
law (2) boil down to{

FFF(t,qqq,q̇qq = 0) = H >(qqq)rrr
∀i = 1 . . .n, rrri ∈ Kµ i .

(3)

As expected, all contact forces are set in the sticking case and
should thus belong to the Coulomb friction cone. Let us now ex-
plicitly rewrite System (3) in the case of contacting super-helices
(made of N elements). Introducing the (constant) diagonal stiffness
matrix K with the jth 3N×3N block K j

kk = `
j
k EI, where ` j

k is the
length of the kth element of the jth rod, we get{

K (qqq−qqq0) =FFFg(qqq)+H >(qqq)rrr
∀i = 1 . . .n, rrri ∈ Kµ i ,

(4)

where K (qqq−qqq0) collects internal elastic forces, and the jth block
FFF j

g(qqq) of the generalized force FFFg results from the contribution
of gravity applied to the jth rod. In the absence of contacts, we
retrieve the simple balance condition between elastic and gravita-
tional forces,

K
(

qqq−qqq0
)
=FFFg(qqq). (5)

Inverse statics In our problem, the configuration of the rod
is known: the generalized coordinates qqq (discrete curvatures and
twists in our case) are directly provided by the geometric fitting of
the input hairstyle (see Section 4). Our goal is thus not to solve (4)
for the qqq variable (direct problem), but instead the inverse problem
taking as input the configuration qqq of the rod. Without contact (see
Equation (5)), the unknowns amount to the geometric and physical
parameters of the rods: their linear mass density ρS, their stiff-
ness EI, and their intrinsic curliness qqq0. When the linear mass den-
sity and the stiffness are fixed, the equilibrium condition is trivially
met by a unique solution for qqq0, qqq0 = qqq−K −1FFFg(qqq), and a stabil-
ity criterion can be stated depending on the ratio EI/ρS [Derouet-
Jourdan et al. 2010]. When contact enters the game however (see
System (4)), we have to deal with two types of supplementary un-
knowns: the n contact forces rrri, and the corresponding friction co-
efficients µ i. While friction coefficients can be reasonably fixed
to plausible values (0.1 ≤ µ ≤ 0.3), contact forces cannot be es-
timated easily and may take a wide range of values which remain
compatible with the equilibrium condition (4). We are thus faced
with a large underdetermined system. Yet, a number of reasonable
assumptions about the hair material may help us formulate a well-
posed problem, as shown below.

6 Inversion as a Well-Posed Convex SOCQP

By leveraging a few reasonable assumptions about hair physical
parameters and active contact forces (Section 6.1), we come up with
a well-posed, strictly convex second-order cone quadratic program
(SOCQP), which can be solved efficiently in practice (Section 6.2)

6.1 Physical assumptions for a well-posed problem

To remove unnecessary underdetermination of our inverse prob-
lem (4), we first fix the hair physical parameters for which typical
values are known (the linear mass density and the stiffness), and set
the friction coefficients to a plausible value (typically, µ i = 0.3).
We are then left with the intrinsic hair curliness qqq0 and the con-
tact forces rrr as unknowns. Even though neither one of them can be
estimated easily, some reasonable assumptions can be made about
them.



Intrinsic curliness as a target Consider the synthetic hairstyle
in Figure 4(b). From our visual perception, it is obvious that the
hair is intrinsically straight, and that its curved shape near the head
and the shoulders is due to contact solely, and by no means to the
hair intrinsic shape. Although rrr = 0 appears to be a possible so-
lution to the inverse statics (4), one would thus like to discard this
choice in this case, and instead impose the intrinsic curliness qqq0

to be close to 0. More generally, provided it is possible to esti-
mate a plausible hair intrinsic curliness, one would want to fix it,
and then solve (4) to retrieve the corresponding contact forces. Un-
fortunately, it is not always possible to find a rrr satisfying such a
problem. Moreover, if the estimation of qqq0 is biased, unreasonably
large contact forces may be necessary to satisfy it. Instead, we thus
rather take the estimation of the intrinsic curliness as a target qqq0

est
and penalize the contact forces so that they always keep a reason-
able value. This can be formulated mathematically as a well-posed
optimization problem, as explained below.

A well-posed convex SOCQP Our goal is to minimize the drift
‖qqq0 −qqq0

est‖ while exactly satisfying Equilibrium (4) and prevent-
ing rrr from reaching too large values in norm. This amounts to for-
mulating the following optimization problem

min
rrr

1
2

(
‖qqq0(rrr)−qqq0

est‖2 + γ ‖rrr‖2
)

s.t. rrri ∈ Kµ i ∀i = 1 . . .n,
(6)

where γ > 0 is the regularization coefficient for the contact forces.
In practice we fixed γ to 1.10−3 N−2.m−2 for all our tests. Expand-
ing the expression of qqq0(rrr) using Equation (4) yields

min
rrr

1
2

(
‖K −1H >rrr+K −1(FFFg(qqq)−K (qqq−qqq0

est))‖2 + γ ‖rrr‖2
)

s.t. rrri ∈ Kµ i ∀i = 1 . . .n,

which formally reads

min
rrr

1
2

rrr>W rrr+bbb>rrr

s.t. rrri ∈ Kµ i ∀i = 1 . . .n,
(7)

with W =H K −2H >+γI (where I is the identity matrix) and
bbb = H K −2(FFFg(qqq)−K (qqq−qqq0

est)). Note that the objective func-
tion f (rrr) = 1

2rrr>W rrr + rrr>bbb is quadratic, and has to be minimized
under second-order conic constraints: our problem is a second-
order cone quadratic program (SOCQP), and belongs to the fam-
ily of the so-called quadratically constrained quadratic programs
(QCQP) [Boyd and Vandenberghe 2004]. Since W is symmetric
positive-definite (definiteness comes from the regularization term),
our problem is strictly convex and admits a unique solution rrr. We
have thus transformed the initial underdetermined problem (4) into
the well-posed convex problem (7).

Estimation of the intrinsic curliness For now we have assumed
the intrinsic curliness of a given hairstyle could be guessed easily.
If one adopts the simplistic assumption that hair grows regularly on
the scalp with a uniform curliness, it is indeed possible to retrieve
this value approximately. Boundary conditions for thin elastic rods
subject to gravity tell us that at the free end of hair fibers, the actual
curvature equals the intrinsic curliness. Provided no contact sub-
stantially deforms the tip of the hair, one may thus simply measure
the actual curvature at the tip to get a plausible estimation of the
intrinsic curliness.

For complex, realistic hairstyles however, estimating the intrinsic
curliness accurately is not easy. Look at the hairstyle in Figure 1(a).
One may guess this hairstyle is almost straight, however it seems

that the hair bump above the neck and the slight curvature of the
hair strands falling upon the forehead and the cheek are due to some
past deformation, as if hair had been deformed and had memorized
its history. In such a case, we found out that taking as an estima-
tion the full actual configuration qqq yielded better results than taking
a uniform intrinsic curvature matching qqq at the tip only. Looking
back to our minimization problem (6), this choice can be interpreted
mechanically. Taking qqq0

est = qqq means that we are searching for con-
tact forces that guarantee an exact equilibrium state for hair while
minimizing hair internal elastic energy. This implies that, as far
as possible, we rely on the contact forces to compensate for grav-
ity. Of course, as the number of contact points is arbitrarily sparse
and as the contact forces are bounded and constrained to belong to
the friction cone, contact is unlikely to support any arbitrary input
shape on its own. In the (common) case where contacts are not suf-
ficient to compensate for gravity, then the elastic energy becomes
active and contributes to the equilibrium. Note that in the extreme
case where not a single contact is declared, then the elastic energy
has to compensate for gravity on its own, and the formulation boils
down to Equation (5).

The accompanying video illustrates, for the captured hairstyle de-
picted in Figure 1(a), the difference between choosing qqq0

est as uni-
form vs. taking qqq0

est equal to qqq. Both methods lead to a perfect
equilibrium but different behaviors are visible once animation is
started. In the former case, some artificial tufts pop out of the hair
during motion. Indeed, as hair strands gradually get moving, some
initial contact constraints are lost and strands then strive to reach
their rest shape, which was set up with a uniform vanishing intrin-
sic curvature. These undesirable effects are mitigated in the latter
case as the actual (non-uniform) curvature qqq integrates the small
variations along the fibers which are more likely due to their past
history (combing, wetting, drying, etc.) rather than contact. Note
finally that at the end of the motion, in both cases hair straightens
as expected after the character has leant her head back and hair has
stopped contacting with the shoulders.

6.2 An efficient and robust SOCQP solver

A challenging optimization problem As our inverse prob-
lem (7) is convex, one may naturally attempt to solve it using stan-
dard algorithms from convex analysis. Typically, interior points
methods constitute a prime family of solvers for quadratic problems
subject to quadratic constraints [Boyd and Vandenberghe 2004].
Unfortunately, because our problem is very large in size (thousands
to tens of thousands contacts are accounted for), solving it in a rea-
sonable amount of time is likely to be out of reach for standard
solvers.

We have tried the interior point method provided by the free Ipopt
package [Wächter and Biegler 2006]. Although this solver yielded
good convergence results for small size problems (a few hundreds
contacts), it could not scale up well to larger problems. To come
up with a working solution, we instead turned to a solver dedicated
to our type of problem. Actually, as explained below, we managed
to find an equivalent formulation of our inverse problem (7) which
exactly fits in with the input format of Daviet et al.’s solver, initially
introduced for solving the direct problem [Daviet et al. 2011]. Solv-
ing (7) then simply boiled down to applying Daviet et al.’s one-step
solver, which in practice converged well and efficiently (in a few
seconds) for all our examples.

Formulation as a conic complementarity problem Our objec-
tive function f is differentiable and convex, and is minimized over
a convex set L = Kµ1 × . . .×Kµn (a product of cones). A standard
result of convex analysis (see, e.g., [Boyd and Vandenberghe 2004])
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Figure 3: Optimality conditions for a convex minimization problem
under a conic constraint, split into three different cases: (a) r̄rr lies
in the cone and ∇∇∇ f (r̄rr) = 0; (b) r̄rr = 0 and −∇∇∇ f (r̄rr) lies in the dual
cone; (c) r̄rr 6= 0 lies on the boundary of the cone and −∇∇∇ f (r̄rr) lies
on the boundary of the dual cone and is normal to r̄rr.

states that r̄rr is a solution to the convex problem (7) if and only if

−∇∇∇ f (r̄rr)>(y− r̄rr)≤ 0 ∀y ∈ L (8)

where ∇∇∇ f (rrr) is the gradient of f . In our case, ∇∇∇ f (rrr) = W rrr+bbb.

The variational inequality (8) can be interpreted as follows. Ei-
ther the minimum of the unconstrained problem belongs to the con-
vex set L, in which case it obviously corresponds to the solution
r̄rr of the constrained problem (7) and it is reached for ∇∇∇ f (r̄rr) = 0
(see Figure 3 (a)). Or, the minimum of the unconstrained problem
falls outside L, in which case r̄rr should lie on the border of L, and
∇∇∇ f (r̄rr) 6= 0 should make an obtuse angle with any vector of L pass-
ing through r̄rr. Indeed, if this was not the case, it would be still
possible to minimize f while remaining in the constraints set L, by
descending along the projection of −∇∇∇ f (r̄rr) onto the convex set L.

Let us have a deeper look at the latter case, when L is, for simplicity,
a single cone Kµ . The analysis below can be generalized easily to
a product of cones. First, consider that r̄rr = 0. In this case, the
inequality (8) is satisfied if and only if ∇∇∇ f lies anywhere inside the
opposite of the dual cone K 1

µ

(see Figure 3 (b)). Now assume that

r̄rr 6= 0 and that r̄rr lies on the (smooth) boundary of Kµ . Then one
may identify (8) as the definition of the normal vector to a smooth
surface, and realize that ∇∇∇ f is the outward normal of the cone Kµ

at point r̄rr (see Figure 3, (c)).

Unifying the three cases described above, the optimality conditions
of our SOCQP are thus equivalent to the following complementarity
condition

∀i = 1 . . .n, K 1
µi
3 (∇∇∇ f (rrr))i ⊥ rrri ∈ Kµ i . (9)

Interestingly, this condition is mathematically similar to the com-
plementarity condition (2) of the dynamic case, except that the dy-
namic variable ũuui has been replaced with (∇∇∇ f (rrr))i, i.e., the ith 3×1
block of the gradient. Now, the solver of [Daviet et al. 2011] was
designed to solve exactly this kind of conic complementarity, i.e.,
problems which can be formulated as

∀i = 1 . . .n, K 1
µi
3 (Wrrr+ c)i ⊥ rrri ∈ Kµ i ,

where W is a symmetric positive (semi-)definite matrix of size
(3n,3n), and c a vector of size 3n. In the direct (dynamic)
case, W was identified to the sparse (discrete) Delassus operator
H M−1H > [Daviet et al. 2011]. In our static inversion problem,
W is identified to our W matrix, which is sparse, symmetric and
positive-definite.

We can thus apply Daviet et al.’s solver straightforwardly to solve
our inverse problem (9), and thus our initial SOCQP (7). Unlike the

Table 1: Input and performance of our inversion algorithm.

Input hairstyle nbstrands nbcontacts Tgeom. f itting (s) Tinv.statics (s)

straightSynthSim 240 2,353 - 2.6
wavySynthArtist 240 8,922 26 5
straightCapture 1,980 30,381 21 19

curlyCapture 1,105 14,358 95 15

dynamic problem (2), our inverse problem (9) is convex. It is thus
likely to be easier to solve. In practice, simply using the primary
Fischer-Burmeister solver of [Daviet et al. 2011] (with no fail-safe)
proved to converge well for all the problems we have tested.

7 Results and Discussion

Our inversion method was applied to four long hairstyles coming
from various sources:

• straightSynthSim: a synthetic straight hairstyle generated by
simulation (see Figure 4(b));

• wavySynthArtist: a synthetic wavy hairstyle designed by an
artist (see Figure 2, left);

• straightCapture: a real straight hairstyle recently captured
by Herrera and colleagues [2012] (see Figure 1(a));

• curlyCapture: a real curly wig (resting on the head of a man-
nequin with no shoulders) recently captured by Luo and col-
leagues [2013] (see Figure 5(a)).

In this section and in the accompanying video, we present and an-
alyze the results yielded by our inversion method, for each input
hairstyle. We also validate our inversion process on the simple syn-
thetic case straightSynthSim, where all physical parameters are
known and can thus be compared against the retrieved values. Then,
we show how each input hairstyle can be animated consistently and
even further edited in a physically-based manner. Finally, we dis-
cuss the strengths and limitations of our approach.

7.1 Results
Parameters and performance Table 1 summarizes the main fea-
tures of the input hairstyles we have tested, as well as the computa-
tional timings for the full pipeline.

Unlike other hairstyles, straightCapture was provided with no
consistent body mesh attached to it. For this hairstyle we have thus
manually adjusted our body mesh so that it roughly fits in with the
hair, with no interpenetration. To be able to handle the extremely
intricate style curlyCapture, we have allowed ourselves to slightly
smooth out the original shape by using a limited number of ele-
ments per super-helix (up to 40).

Except for straightSynthSim where we took qqq0
est = 0, we have

found out that taking qqq0
est = qqq yielded better results, as explained

in Section 6.1 and illustrated in the video. The γ parameter was
fixed to 1.10−3 N−2.m−2 for all our tests.

Timings were measured on a standard desktop computer featuring
a CPU running at 2.3 GHz. Overall, it turns out that our method
is pretty fast. Even for complex hairstyles made of almost 2,000
strands, the total amount of time necessary for fitting curves to
piecewise helices and solving the SOCQP problem never exceeds 2
minutes. Compared to other hairstyles, wavySynthArtist is longer
to fit geometrically because it is originally composed of many small
Bézier patches, which slows down the sampling step.



Validation under controlled conditions To check that our in-
version process computes plausible physical parameters, we per-
formed a simple experiment using the hairstyle straightSynthSim
synthesized with the hair simulator from [Daviet et al. 2011].

Figure 4 illustrates the physical process (a) for creating our syn-
thetic hairstyle (b) and shows the resulting hair rest pose once body
contacts have been removed, in 3 different cases: after the original
simulation was continued (c), after a new simulation was initialized
from (b) using inversion accounting for gravity only (d), and after
a new simulation was initialized from (b) using our new inversion
algorithm (e). As expected, hair falls straight in the original simula-
tion (c). Our inverted hairstyle (e) behaves similarly, meaning that
our computed parameters are plausible. In practice we measured
an average error of 0.9 m−1 between the original intrinsic curliness
and the one retrieved by inversion (compared to an average error of
9.9 m−1 for the inversion without contacts, with the same Young
modulus). In contrast, as the inversion in (d) does not account for
contact, hair artificially keeps its original pose, as if the body was
still there. Furthermore, to be stable, it requires a large Young mod-
ulus (E = 100GPa), making the animation overly stiff.

(a) (b) (c)

(d) (e)

Figure 4: Generation of a synthetic hairstyle by simulation: ini-
tial hair strands (a) are simulated under gravity to form a static
shape (b). When removing the body this hairstyle falls straight (c).
Inverting the input style (b) with our method and then applying
gravity to it (e) yields the same behavior as the reference (c). In
contrast, the curved shape of hair due to contacts is artificially pre-
served (d) when naı̈vely using the inversion process from [Derouet-
Jourdan et al. 2010] which accounts for gravity only.

Consistent physics-based animation and editing Once a
hairstyle has been inverted by our method, we have at our disposal
a plausible hair physics-based model whose static shape perfectly
matches the input geometry. Straightforward applications of our
technique then include physics-based animation as well as physical
editing (such as trimming the hairstyle).

Figures 1(d), 2(c), and 5(b) show the animation of the input
hairstyles straightCapture, wavySynthArtist, and curlyCapture
respectively, on a rotating and leaning head motion. Compared to
the naı̈ve approach without inversion, which causes undesired sag-
ging, our method nicely preserves the initial equilibrium configura-
tion once the dynamic simulation is started, as long as the character
remains still. Once the character moves, hair starts to flow natu-
rally. Note that the captured hairstyle curlyCapture was particu-
larly challenging to invert and animate, due to its intricate geome-
try. To remove instabilities, we had to increase the accuracy of the
contact solver. In practice we decreased the tolerance of the solver
(x10−3) for this simulation.

(a) (b) (c)

Figure 5: Real curly wig (a) captured from [Luo et al. 2013], in-
verted by our method and physically animated (b) and trimmed (c).

We have also applied a virtual trimming to the two captured
hairstyles and observed that hair tended to pull up and expand, as
expected (see Figure 5(c)). Unlike geometric methods that simply
truncate the strands, our method allows one to predict the physical
effect of removing mass to the material.

Finally, as previously mentioned, note that our inversion method is
versatile and could be applied to hair simulators relying upon other
rod models. For instance, the Discrete Elastic Rods model [Bergou
et al. 2008] would naturally fit into our framework, the sole differ-
ence being the structure of the stiffness matrix K which would be
banded instead of diagonal.

7.2 Limitations

Although we were able to apply our inversion technique to chal-
lenging input hairstyles, we feel our method could be improved in
a number of ways.

Refining input captured data One important issue that our prac-
tical experiments revealed is that the information provided by hair
capture systems is insufficient compared to our needs. Our goal
was to start from raw hair data with no a priori knowledge about
how hairstyles were captured and reconstructed. However we re-
alized that supplementary information w.r.t. the accurate geometry
of contacting objects would have helped us a lot for the inversion.
Indeed, one critical step of our inversion process is the declaration
of active contacts. If some contacts are not set active where they
should be, the solver may find excessively large intrinsic hair curli-
ness for accounting for the static shape, causing further instability
during animation. Conversely, if too many contacts are declared,
this may cause unnecessarily large computational timings for the
inversion and the subsequent simulation.

One key information that would be first required is the accurate
geometry of the supporting body mesh. Except for curlyCapture
where we had at our disposal the original mesh of the supporting
head, for other captured styles that we have tested, we asked an
artist to manually adjust a virtual mannequin so that it roughly fits in
with the hair data. This was feasible for straightCapture (although
we have probably altered the original position of the real person),
but not for the other styles we have tested (either the hair was not
contacting the surface of the body mesh at some places, or it was
penetrating through the mesh at some other places).

Second, when input curves represent the centerlines of large
wisps (this is the case, e.g., for artistic hairstyles or structured hair
captures [Luo et al. 2013]), the geometric representation of con-
tacting wisps as cylinder chains with constant width may be too
far from their real shape. Our ideal input would consist of a set



of wisps centerlines evenly distributed, together with the accurate
geometry of their envelope. Envelopes should be reconstructed or
approximated in such a way that neighboring wisps do contact each
other, with no penetration.

Given the fact that the level of accuracy reached by our inversion
method is tightly bound to the hair acquisition process, we think
that in the future, an optimal way of refining the full digital hair
cloning process from capture to animation will be to join efforts
from both communities.

Towards the inversion of hair motion Overall, we believe the
geometry of a single, static hairstyle already reveals a lot about the
mechanical state of hair. With simple assumptions about hair ho-
mogeneity and very few parameters to tune, we have shown that
our method could automatically retrieve plausible values for the
hair intrinsic curliness as well as hair-body and hair-hair contact
forces. Compared to recent hair animation approaches which re-
synthesize hair motion from the capture of real hair motion [Luo
et al. 2011; Zhang et al. 2012] or the learning of precomputed hair
simulations [Guan et al. 2012], our method offers an interesting al-
ternative since it relies upon limited input data (a single hair geom-
etry) and benefits from the versatility of physics-based approaches.

However, our approach may suffer from multiple inaccuracies due
to incomplete input information. Although our simple estimation
of the hair intrinsic curliness yielded satisfying results in our tests,
it may be a poor approximation if contacts severely alter the shape
of hair. Likewise, tuning the parameter γ to better balance the role
of contacts w.r.t. elasticity in the equilibrium configuration may not
be very intuitive for the user. Moreover, in our tests we arbitrarily
fixed the friction coefficients to a plausible value, but the stability
of the static hairstyle may be fairly sensitive to the choice of this
value. Combining our approach to others which analyze data of
hair in motion would certainly help us refine the estimation of such
parameters, and thus improve the accuracy of our inversion process.

Conclusion
We have presented the first robust method that converts an arbitrary
hairstyle geometry into a plausible physics-based hair model suit-
able for subsequent animation as well as for further physical edit-
ing. Because our method relies on detailed but affordable geometry
data, we believe it could pave the way for a number of new excit-
ing applications, such as the dynamic digital cloning of characters
or the predictive, customer-specific virtual styling of hair. In the fu-
ture we would like to compare our method against experimental hair
measurements so as to better assess and possibly refine the range of
validity of our approach, with the aim to develop an accurate re-
verse engineering approach for hair. Moreover, we would be inter-
ested in applying our method to other materials whose static shape
may also reveal a lot of interesting underlying mechanics, such as
folded cloth. Finally, we are intrigued by the good robustness and
efficiency of our new SOCQP solver w.r.t. large problems, and plan
to perform thorough comparisons with current state-of-the-art opti-
mization approaches, on an extended range of benchmarks.
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DE SAXCÉ, G., AND FENG, Z.-Q. 1998. The bipotential method:
a constructive approach to design the complete contact law with
friction and improved numerical algorithms. Math. Comput.
Modelling 28, 4-8, 225–245.

DEROUET-JOURDAN, A., BERTAILS-DESCOUBES, F., AND
THOLLOT, J. 2010. Stable inverse dynamic curves. ACM Trans-
actions on Graphics (Proc. ACM SIGGRAPH Asia’10 ) 29 (De-
cember), 137:1–137:10.

DEROUET-JOURDAN, A., BERTAILS-DESCOUBES, F., AND
THOLLOT, J. 2013. Floating tangents for approximating spatial
curves with G1 piecewise helices. Computer Aided Geometric
Design 30 (June).

FUKUSHIMA, M., LUO, Z.-Q., AND TSENG, P. 2002. Smooth-
ing functions for second-order-cone complementarity problems.
SIAM J. on Optimization 12 (February), 436–460.

GHOSH, S. 2010. Geometric approximation of curves and singu-
larities of secant maps. A differential geometric approach. PhD
thesis, University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

GRABLI, S., SILLION, F., MARSCHNER, S., AND LENGYEL, J.
2002. Image-based hair capture by inverse lighting. In Proc.
Graphics Interface, 51–58.



GUAN, P., SIGAL, L., REZNITSKAYA, V., AND HODGINS, J.
2012. Multi-linear data-driven dynamic hair model with effi-
cient hair-body collision handling. In ACM SIGGRAPH - EG
Symposium on Computer Animation (SCA’12), ACM-EG SCA,
295–304.

HADAP, S., AND MAGNENAT-THALMANN, N. 2000. Interactive
hair styler based on fluid flow. In EG workshop on Computer
Animation and Simulation (EG CAS’00), 87–100.

HADAP, S., AND MAGNENAT-THALMANN, N. 2001. Modeling
dynamic hair as a continuum. Computer Graphics Forum (Proc.
Eurographics’01) 20, 3, 329–338.

HADAP, S. 2006. Oriented strands - dynamics of stiff multi-body
system. In ACM SIGGRAPH - EG Symposium on Computer An-
imation (SCA’06), ACM-EG SCA, 91–100.

HERRERA, T. L., ZINKE, A., AND WEBER, A. 2012. Light-
ing hair from the inside: A thermal approach to hair reconstruc-
tion. ACM Transactions on Graphics (Proc. ACM SIGGRAPH
Asia’12) 31.

JAKOB, W., MOON, J., AND MARSCHNER, S. 2009. Capturing
hair assemblies fiber by fiber. ACM Transactions on Graphics
(Proc. ACM SIGGRAPH Asia’09) 28.

KIM, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolu-
tion hair modeling and editing. ACM Transactions on Graphics
(Proc. ACM SIGGRAPH’02 ) 21, 3 (July), 620–629.

KOH, C., AND HUANG, Z. 2000. Real-time animation of human
hair modeled in strips. In EG workshop on Computer Animation
and Simulation (EG CAS’00), 101–112.

KONG, W., TAKAHASHI, H., AND NAKAJIMA, M. 1997. Gener-
ation of 3D hair model from multiple pictures. Proceedings of
Multimedia Modeling, 183–196.

LEE, D.-W., AND KO, H.-S. 2001. Natural hairstyle modeling
and animation. Graphical Models 63, 2 (March), 67–85.

LUO, L., LI, H., WEISE, T., PARIS, S., PAULY, M., AND
RUSINKIEWICZ, S. 2011. Dynamic hair capture. Tech. rep.,
Princeton University, August.

LUO, L., LI, H., AND RUSINKIEWICZ, S. 2013. Structure-aware
hair capture. ACM Transactions on Graphics (Proc. ACM SIG-
GRAPH’13) 32, 4.

MCADAMS, A., SELLE, A., WARD, K., SIFAKIS, E., AND
TERAN, J. 2009. Detail preserving continuum simulation of
straight hair. ACM Transactions on Graphics (Proc. ACM SIG-
GRAPH’09 ) 28, 3, 1–6.

MOREAU, J. 1994. Some numerical methods in multibody dy-
namics: Application to granular materials. European Journal of
Mechanics - A/Solids supp., 4, 93–114.
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