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Abstract

We propose a robust and efficient numerical model to compute stable equilib-
rium configurations of clamped elastic ribbons featuring arbitrarily curved nat-
ural shapes. Our spatial discretization scheme relies on elements characterized
by a linear normal curvature and a quadratic geodesic torsion with respect to
arc length. Such a high-order discretization allows for a great diversity of kine-
matic representations, while guaranteeing the surface of the ribbon to remain
perfectly inextensible. Stable equilibria are calculated by minimizing the sum of
the gravitational and elastic energies of the ribbon, under a developability con-
straint. Our algorithm compares favorably to standard shooting and collocation
methods, as well as to experiments. It furthermore shows significant differences
in behavior compared to numerical models for thin elastic rods, while yielding
a substantial speed-up compared to a more general thin elastic shell simula-
tor. These results confirm the benefit of designing a special numerical model
dedicated to ribbons.
Keywords: Slender elastic structure, developable surface, curvature-based
elements, constraint-based nonlinear optimization
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1. Introduction

From cable plies and fashion accessories to hair ringlets, flexible band-shaped
structures, namely ribbons, are widely present in our daily environment. While
the mechanical study of ribbons was initiated in the 1930s [1], there is recently a
renewed interest in understanding and modeling such fascinating structures [2].
Formally, a ribbon-like structure lies between rod and plate models: its thickness
remains negligible in comparison to its width, the latter being itself negligible
in comparison to its length. Under clamped-free boundary conditions, it is
reasonable to consider the ribbon as a developable surface [3, Sec. 6.7.1], that is,
a surface that can be flattened onto a plane without any local distortion. What is
more, this surface remains inextensible, meaning that it cannot be stretched nor
sheared, but it deforms isometrically, by pure bending (in contrast to situations
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where wrinkles appear, see e.g. [4]). We assume that this surface is always
smooth, that is, at least twice differentiable. In this paper, we further limit
ourselves to the case of a rectangular ribbon geometry with a fixed thickness,
composed of an isotropic and linear elastic material, see Fig. 1.

Developability implies that whatever the state of the ribbon, its surface is
ruled, i.e. it is the union of infinitely thin segments called rulings. Note that
these rulings do not correspond to material lines of the ribbon, but only to
geometric lines which continuously evolve during deformation. The presence
of rulings is an important feature of the ribbon surface and was discussed in
connection with the shape of the Möbius strip soon after its introduction, see
e.g. [5, 6, 7]. Computing the equilibrium shape of the Möbius strip is partly
responsible for the recent interest in elastic ribbon equations, see for example
[8, 9] where equilibrium equations are written in their strong formulation and
the boundary value problem is solved using the Auto package [10]. Other
recent works include [11] who show that ribbon equations can be written in a
form similar to the Kirchhoff equations for elastic rods, albeit yielding different
behaviors under the same loading [12, 13, 14].

Figure 1: Stable equilibrium
of a curled ribbon made of 5
elements, computed in 0.55
seconds with our method.

While the number of numerical models for elas-
tic rods has exploded from the 80s to recent years,
see e.g. [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],
to our knowledge very few computer codes have been
designed specifically for ribbons. An exception is the
dynamic ribbon simulator proposed in [26, 27], which
relies on a nodal discretization of the ribbon surface.
This model requires a number of elements that in-
creases as the surface is getting curved, making its
use inefficient in the case of strongly curled ribbons.
In addition, inextensibility of the ribbon is taken into
account by means of additional constraints, which are
non-linear. Our approach relies on a radically differ-
ent discretization scheme, where curvatures (instead
of positions) are chosen as degrees of freedom. Com-
pared to inextensible rod models, only two (instead of
three) curvatures are sufficient to describe the actual
degrees of freedom of a ribbon, due to the developa-
bility constraint. Our final choice for a reduced set of
curvatures allows us to capture precisely the geometry
of the ribbon for arbitrary natural curvatures, while
guaranteeing the developability and inextensibility of
the ribbon in an exact and automated manner.

Contribution. Our approach is based on the theoretical Wunderlich ribbon
model presented in [11], which we briefly recall in section 2. We numerically
compute stable equilibrium solutions of ribbons, drawing inspiration from the
curvature-based models developed for inextensible elastic rods [19, 28].

In particular, we choose to use material curvatures of the ribbon as main
variables of our system, making it easier to recover a smooth and inextensible
ribbon centerline, regardless of the chosen resolution – which contrasts with
classical nodal models. The developability constraint is simply accounted for by
reducing the number of variables to two scalar fields: one material curvature,
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and one variable accounting for the direction of the rulings. A difficulty, how-
ever, is to reconstruct the geometry of the ribbon accurately from this reduced
set of degrees of freedom. Inspired by the super-clothoid rod model [28], we use
power series for the integration of the ribbon centerline from curvatures, while
keeping a fine control on the numerical error (section 3). Thanks to the ruling
direction as a primary variable, the developable surface of the ribbon can then
be constructed from the centerline with excellent accuracy. A last difficulty con-
sists in ensuring the non-crossing of the rulings during the deformation of the
ribbon, so as to guarantee that the ribbon surface remains smooth. We treat
this condition as an inequality constraint in our energy minimization problem.
We analytically compute the first and second derivatives of our discrete ribbon
energy and use an interior point minimization method relying on the energy Hes-
sian [29]. Numerical solutions are then found in a few seconds on a standard
machine (see inset figure), and this for a wide range of parameters (section 4).
Finally, we show that our code compares favorably to standard shooting and
collocation methods, and to experiments. Furthermore, our results highlight
significant differences compared to equilibria generated by thin elastic rod mod-
els, as well as a substantial speed-up compared to a more general shell numerical
model, which confirms the benefit of designing a numerical model dedicated to
ribbons (section 5).

2. Wunderlich ribbon parameterized by curvatures
The ribbon model of Sadowsky [1, 30] defines a one dimensional elastic

energy derived for the case h� w � L, with h the thickness, w the width, and
L the length of the ribbon. It enforces a developable mid-surface, as opposed to
elastic rods models. Our approach relies on the Wunderlich ribbon model [7],
as described in [11], which is a generalization of the Sadowsky model when w
grows towards L. In the following we show how to exploit this 1D ribbon
energy, without using existing auto-differentiation tools, to reach a desired and
controlled precision at a minimal cost.
Notation. Scalars will be denoted by plain small letters, vectors of R3 by bold
small letters, and matrices of the rotation group SO3 by slant capital letters.
For instance, we shall write v ∈ R, a ∈ R3, and R ∈ SO3. Scalar product
between two vectors u and v of R3 will be denoted by u · v. We further define
[·]× : R3 → A3 as the linear operator transforming the vector product into
a matrix multiplication u × v = [u]× v, with A3 the set of real asymmetric
matrices of size 3 by 3. Finally, x′(s) = dx

ds will denote the spatial derivative of
the function x(s).

2.1. Base geometric parameterization

We consider a rectangular ribbon with constant thickness h. Let r : [0, L]→
R3 be the centerline of the ribbon, parameterized by the arc length s ∈ [0, L],
with L the total length of the ribbon. The material (Cosserat) frame R :
[0, L] → SO3 describes the surface locally around the centerline. For each
point r(s), we denote by d1(s), d2(s), and d3(s) the column vectors of the ro-
tation matrix R(s). Geometrically, the component d3(s) stands for the unitary
vector tangent to the centerline at s, d2(s) for the unitary surface normal, while
d1(s) = d2(s)×d3(s) is imposed by the SO3 structure. Figure 2 illustrates the
geometric configuration of a ribbon.
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Centerline r

d2 (normal to the surface)

d1 = d2 × d3

d3 (tangent to the centerline)

Ruling L θ (η = tan θ)

Figure 2: Base parameterization of a ribbon consisting of the centerline r, the Cosserat
material frame R, and the scalar field η = tan θ.

Ruled surface. As mentioned earlier, the surface of the ribbon is ruled, meaning
that at each point r(s) of the centerline passes a straight segment – called
a ruling, and denoted by L(s) – which connects the two boundaries of the
ribbon in the transverse direction while lying on its surface (orange segment in
figure 2). As d2(s) is normal to the ribbon surface at s, the direction q(s) of
the ruling going through r(s), called the generatrix, must belong to the plane
(d1(s),d3(s)). The angle between the ruling and d1(s) is θ(s), and we use the
scalar field η = tan θ (with η : [0, L] → R) to obtain a simple parameterization
of the generatrix as

q(s) = d1(s) + η(s) d3(s). (1)
Note that q(s) is not normed in general, its norm being

√
1 + η2(s). From

the generatrix, the ruling then reads L(s) = {r(s) + v q(s); v ∈ S(s)}, where
the interval S(s) ∈ R is specified in the following. Finally, the surface of the
ribbon, representing the set of all rulings, is given by the function

φ : [0, L]× S → R3

(s, v) 7→ r(s) + v [d1(s) + η(s)d3(s)]︸ ︷︷ ︸
q(s)

. (2)

In the present case of a rectangular ribbon, the set S(s) boils down to a constant
interval. Indeed, consider a deformed ribbon with its ruling L(s) = {r(s) +
v [d1(s) + η(s)d3(s)]; v ∈ S(s)}. The interval S(s) is actually easier to evaluate
on a flat configuration, so we deform the ribbon isometrically until it becomes
flat, and we denote variables in the flat configuration with bars. Here consider
the deformation of the initial ruling L̄(s), which reads L̄(s) = {r̄(s) + v [d̄1(s) +
η(s)d̄3(s)]; v ∈ S(s)}. Note that in this expression, only the material frame
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has changed compared to the deformed configuration. All distances and angles
are preserved, so the ruling orientation η(s) and v are kept the same, and as a
result the interval S(s) is invariant through the isometric flattening operation.
We show in figure 3-left, the ruling on the flat configuration. At the edge
point r̄+(s) = φ̄(s, w

2
) we have v = w

2
, so we deduce S = [−w

2
, w

2
], which is

independent of s.
The reader can remark that rulings are not material lines: when the ribbon

deforms, the set of material points forming the rulings changes. Moreover, L̄(s)
denotes a valid set of rules for the flat configuration, and they might not be
parallel.

d̄3 d̄1

w
2

w
2

r̄+(s)

r̄−(s)
1

η(s)q(s)

v

vη(s)

φ̄(s, v)

r̄(s)

s

r̄(sa)

r̄(sb)
I

w
2

w
2

d̄3 d̄1

Figure 3: On the left, parameterization of the ribbon with s, v and η, on the flatten con-
figuration. On the right, illustration of a singular point. Rulings passing at the points of
arc lengths sa and sb are drawn in orange. The surface of the ribbon being developable and
smooth, rulings are not allowed to intersect inside the ribbon.

Wunderlich (or smoothness) constraint. As illustrated in figure 3-right, the rul-
ings of a smooth developable surface cannot intersect inside the surface. To be
convinced, the reader can make a simple experiment: take a paper sheet, bend
the edges to form a cone, and try to get the top of the cone (singularity point)
inside the sheet; unless you crease or rip the sheet, this is impossible.

This non-intersection constraint can be expressed globally on the flat con-
figuration as

∀sa, sb ∈ [0, L], sa 6= sb, ∀va, vb ∈ S, φ̄(sa, va) 6= φ̄(sb, vb),
or, say otherwise, the point I lying at the intersection of two rulings passing
through sa and sb, if it exists (non-parallel rulings), should lie outside the ribbon
surface (see figure 3-right). By noticing that in the flat configuration, the ma-
terial frame {d̄1, d̄2, d̄3} is uniform, and using expression (2), one realizes that
intersection can only happen if va = vb. Furthermore, the global constraint
expressed above is equivalent to a local constraint where sa and sb are infinitely
close, that is, for sb = sa + ds. Expanding φ̄(sa + ds, va) at the first order, the
intersection condition reads ∂φ̄

∂s (sa, va) = 0, which yields 1 + va η
′(s) = 0. The

condition for point I to lie outside the ribbon, |va| > w/2, then reads

∀s ∈ [0, L] |η′(s)| < 2
w
, (3)

which also encompasses the case when rulings are parallel (η′(s) = 0).
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2.2. Curvature-based parameterization

Like for curvature-based rod models [19, 28], our idea is to use the material
curvatures of the ribbon as main variables of our ribbon model, instead of taking
the base geometric variables (r,R, η). This choice allows us to better stick to
the actual degrees of freedom of the ribbon, and in particular, to capture the
inextensibility of the centerline intrinsically. Like for rods, we first need to relate
material curvatures to the geometry (r,R, η) of the ribbon. In contrast to rods
however, we also need to reduce the set of curvatures in order to account for
the inextensibility and developability of the ribbon surface.

From curvatures to the centerline. Inextensibility of the centerline reads r′(s) =
d3(s), which integrates to r(s) = r(0)+

∫ s
t=0

d3(t)dt. Besides, the SO3 structure
implies the existence of a vector Ω(s) ∈ R3 such that R′(s) = [Ω(s)]×R.
The vector Ω(s) is called the Darboux vector, and reads Ω(s) = κ1(s)d1(s) +
κ2(s)d2(s)+κ3(s)d3(s) where κ1(s), κ2(s), and κ3(s) are respectively the normal
curvature, the geodesic curvature and the geodesic torsion of the ribbon at arc
length s – here we simply refer to these quantities as material curvatures, or just
curvatures. It is convenient to manipulate curvatures directly by transforming
the relation into R′(s) = R(s) [κ(s)]×, where we have introduced the curvature
vector κ(s) = (κ1(s), κ2(s), κ3(s))T, such that Ω(s) = R(s)κ(s).

Once the curvature vector field κ(s) and the initial conditions (r(0),R(0)) =
(r0,R0) are given, we obtain a Cauchy integration problem for (R, r), called the
Darboux problem,

P =


(r(0),R(0)) = (r0,R0)
R′(s) = R(s) [κ(s)]×
r′(s) = R(s) ez.

(4)

Here ez = (0, 0, 1)T stands for the third vector of the canonical basis, allowing
us to select the third vector of the material frame, as d3(s) = R(s) ez. The
Darboux problem (4) possesses a unique solution. However it is a linear non-
autonomous differential system and apart from specific cases, the solution has
no closed-form expression in the general case1, i.e. it cannot be represented with
a finite number of elementary operations. Nevertheless, when the curvature is
a polynomial function of s, it can be shown that the solution is analytic2, that
is, it can be expressed as a convergent power series [28]. In section 3.1, we
show how to adapt the power series integration method developed in the case
of rods [28] to the present case of ribbons.

Isometry of the surface. Geometrically, a major difference between rods and
ribbons is that ribbons are characterized by additional constraints: their sur-
face should deform isometrically from a planar configuration, and thus remain

1In particular, due to the non-commutativity of SO(3), taking the exponential of the
primitive of the curvature matrix does not work here as it works for autonomous linear systems
of ODEs, see e.g. [31, 32, 33].

2The term analytic is more inclusive compared to a closed-form expression as it encom-
passes infinite sets of elementary operations. In this paper, we further misuse the term analytic
to characterize a computational method which relies on a truncated power series where the
sum of truncated terms is numerically negligible: machine precision is reached while omitting
these terms.
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inextensible and developable. In the following we simply provide a synthesis of
these conditions, and refer the reader to [11] for mathematical justifications.

On the one hand, inextensibility of the ribbon surface imposes the invariance
of the geodesic curvature. Since κ2 = d′3 · d1, this implies κ2 = d̄′3 · d̄1, which
in the case of a rectangular ribbon boils down to

κ2 = 0. (5)

On the other hand, developability implies a zero Gaussian curvature for the
surface, which can be written as

κ3 = ηκ1. (6)

Reduced degrees of freedom. Given the additional constraints above, we propose
in our model to use η and κ1 as degrees of freedom. This choice allows us,
via equations (5) and (6), to compute κ(s) = (κ1, 0, ηκ1)T for all values of η
and κ1. Note that choosing κ1 and κ3 instead would cause numerical difficulties
for computing η as κ1 vanishes (likewise for the choice of η and κ3).

2.3. Energies

We consider a naturally curved elastic ribbon clamped under gravity. We do
not take into account contact of the ribbon with another object, nor self-contact.

Elastic energy. According to [11, Sec. 6.1], the Wunderlich elastic energy of a
rectangular ribbon with natural normal curvature κN reads

EW = Dw

2

∫ L

0

[
κ2

1(1 + η2)2 1
wη′

ln
(

1 + η′w
2

1− η′w
2

)
− 2κNκ1(1 + νη2)

]
ds, (7)

where ν is the Poisson ratio, Y the Young modulus, and D = Y h3

12(1−ν2)
the bend-

ing modulus of the surface. In the limit η′w → 0, the Wunderlich energy EW
boils down to the so-called Sadowsky energy,

ES = Dw

2

∫ L

0

κ2
1(1 + η2)2 − 2κNκ1(1 + νη2)ds. (8)

Gravitational energy. We define the potential gravitational energy in a standard
way as

EG = −
∫ L

0

∫ w
2

−w
2

ρhφ(s, v) · g da(s, v), (9)

where ρ is the material density, h the thickness of the ribbon, g the gravita-
tional acceleration, and da(s, v) = (1 +v η′(s))dvds the area of the infinitesimal
(trapezoidal) integration element. Integrating (9) along v yields

EG = −
∫ L

0

ρhw

(
r(s) + η′(s)w2

12 q(s)
)
· g ds. (10)

The length of the ribbon being much greater than its width, we consider in the
following that the term η′(s)w2

12
q(s) is negligible, and omit it in our computations

for the sake of simplicity (see section 3.2). In practice, we have not observed
any discrepancy related to this approximation.
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Remarks. Our goal in the following is to compute stable configurations of the
ribbon, that is, local minima of its total mechanical energy. Before discretizing
our set of equations as done in next section, we can already anticipate some
difficulties. First, the non-convexity of the energy appears as a major pitfall for
standard optimization techniques (such as Newton). Another challenge arises
from the logarithmic term in the Wunderlich energy, which diverges when the
constraint (3) becomes active. On the one hand, we shall take this constraint
into account while minimizing energy, and on the other hand we shall build
a limit case for the Wunderlich energy when the constraint is active. In sec-
tions 3.2 and 4.1, we present a solving method able to handle all these issues in
a robust and efficient way.

3. Discretization

To tackle our energy minimization problem numerically, we adopt a Galerkin-
like discretization strategy. The ribbon is cut in p (trapezoidal and curved)
elements, each element being described by a linear normal curvature and a
quadratic geodesic torsion. We first explain how this discrete scheme, combined
with a robust power series summation algorithm, leads to a consistent and ac-
curate approximation of the ribbon kinematics. Then we show how it can be
extended to compute accurately the mechanical energy as well as its first and
second derivatives.

3.1. Discrete kinematics

We cut the centerline in p segments Si = {r(s), s ∈ [si, si+1]} of length
si+1 − si = `i, with i ∈ {0, ..., p − 1}. In the transverse direction, the two
boundaries of each ribbon element Ei are determined by the rulings passing
through r(si) and r(si+1), respectively. Each element Ei thus takes the form of
a trapezoid on the flat configuration (see figure 4-left).

Linear and quadratic form functions. Our goal is to approximate our primary
variables η and κ1 by basis functions parameterized by a finite number of degrees
of freedom. The simplest choice, consisting in taking piecewise uniform functions
as often done in the case of rod models [19, 34, 24, 25], is however inappropriate
here as it leads to a discontinuous ribbon surface. Indeed, if the function η is
discontinuous at element boundaries, then elements cannot even connect to
each other properly (see figure 4-right). In order to guarantee a continuous
and sufficiently smooth ribbon surface, we choose η and κ1 as continuous and
piecewise linear functions of s, i.e. ∀s ∈ [si, si+1], κ1(s) = ai s + bi and η(s) =
ci s + di, with ai, bi, ci, di ∈ R. As a result, the geodesic torsion κ3 = η κ1

takes the form of a piecewise quadratic function of s, i.e. ∀s ∈ [si, si+1], κ3(s) =
aici s2 +

(
aidi + bici

)
s + bidi. Finally, the curvature vector κ is a polynomial

of degree 2 in s on each element,

∀s ∈ [si, si+1], κ(s) = λi0 + λi1 s+ λi2 s
2 (11)

with λi0 = (bi, 0, bidi)T, λi1 = (ai, 0, aidi + bici)T, and λi2 = (0, 0, aici)T.
Taking a polynomial curvature vector of degree ≥ 1 per element however

implies that the Darboux problem (4) has no closed-form solution on the element
(see section 2.2). The recourse to a numerical integration method therefore
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d̄3

d̄1

η(s)r̄(s)

r̄(si)

r̄(si+1)

`i

Figure 4: Left: a trapezoidal element (in white) shown on the flat configuration. Note that
boundaries between the element and its neighbors coincide with rulings. Right: (top) Taking
a constant curvature vector per element leads to discontinuous rulings, thus disconnected
elements; (bottom) in contrast, a linear normal curvature and quadratic geodesic torsion per
element ensures continuity of the rulings, and results in a smooth ribbon surface.

proves necessary, with the risk of turning this crucial kinematical step, which
needs to be accurately resolved, into an overwhelming step. Fortunately, an
analytic integration method, based on power series, has been deployed in [28].
We show that this method can be adapted to solve our ribbon kinematics in a
both accurate and efficient way.

Numerical integration with power series. For the sake of clarity, in this section
we consider a ribbon with a single element, parameterized by its arc length
s ∈ [0, L], and keep previous notation while omitting the subscript i. The
extension to a chain of several elements is discussed in section 3.3.

The curvature vector κ being a polynomial, it is a convergent power se-
ries. Then, it can be shown that r and R are convergent power series too [28,
Theorem 1]. Expanding r(s) and R(s) as power series r(s) =

∑+∞
n=0 rnsn,

R(s) =
∑+∞
n=0 Rnsn, we rewrite the Darboux problem (4) as

r(0) = r0, R(0) = R0∑+∞
n=1 nRnsn−1 =

∑+∞
n=0 Rnsn [κ(s)]×∑+∞

n=1 nrnsn−1 =
∑+∞
n=0 Rnsn ez.

(12)

By uniqueness of the coefficients of a power series, and using the linearity of the
operator [·]×, solving problem (12) amounts to solving the following recurrences,

R0 = R0

R1 = R0 [λ0]×
R2 = 1

2

(
R1 [λ0]× + R0 [λ1]×

)
∀n > 3, Rn = 1

n

(∑2
k=0 Rn−1−k [λk]×

)
r0 = r0

∀n > 0, rn = 1
nRn−1 ez.

(13)
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One main difference with the rod model derived in [28] is the three-term (instead
of a two-term) recurrence for the material frame R. This order increase is
due to our quadratic geodesic torsion, which itself stems from the Wunderlich
constraint (3), inherent to ribbons. Such a difference justifies the need for
revisiting the algorithm proposed in [28]. But still, both problems share many
common features. First, due to the structure of the Darboux problem, the
ribbon series (13), like the rod series, are characterized by a fast convergence
of their remainder, and this, for a relatively low rank n [35]. In practice, it
is therefore sufficient to consider less than a hundred terms for evaluating the
series accurately. Second, if we naively sum the different terms of these series
using floating-point arithmetic, we are quickly faced with a drastic precision
loss. This problem is known as catastrophic cancellation, and has been carefully
analyzed in [36]. For the sake of completeness, we recall the base lines of this
issue in the following.

Catastrophic cancellation. Problems of precision loss appear when summing
terms with very different orders of magnitude and opposite signs. In modern
computers, a real number is represented by a mantissa M , an exponent n and
a sign s = ±1. The value of the real is then s× 1,M × 2n where the comma is
the same as the one that is used to write the decimal part of a number (except
that it is written in binary format here). In double precision, the mantissa M
is of size m = 52 bits, allowing to represent numbers not larger than 252 ≈
1016. Consequently, evaluating 1 + 1016 numerically yields 1016, a phenomenon
called absorption. The problem is that if we now subtract 1016 from the initial
sum, we find 0 instead of 1, which corresponds to a precision loss of 100 %!
The series encountered in (13) includes terms of alternating signs (due to skew
matrices), whose absolute value quickly reaches a very large value as the rank
n increases, before becoming very small beyond a certain rank. As a result, all
the ingredients are present for catastrophic cancellation to arise when summing
the terms of the series.

Error control through element subdivision. In [28], it is explained how to avoid
catastrophic cancellation when integrating the Darboux problem using power
series. A key observation is that numerical issues only occur when s is greater
than a certain threshold. Hence the idea of subdividing the element into sub-
elements, and to solve the Cauchy problem iteratively on each sub-element,
starting from the end of the previous sub-element (shifting first point of the
current sub-element to s = 0). If each sub-element is small enough, integration
is guaranteed to be performed safely, i.e. without precision loss. The question
is how to estimate a suitable size for each sub-element. One idea is to derive a
theoretical upper-bound smax for the length of a given sub-element, such that
the terms of the series to be summed do not exceed in norm the maximal range
covered by floating-point arithmetic. Said otherwise, if one wants a precision
of ε = 2−m

2 (where m is the number of bits for expressing the mantissa), one
should make sure that the largest value of ‖Rnsn‖ is bounded by 2 m

2 . In his
PhD thesis, Casati has derived an upper-bound for ‖Rnsn‖ which is valid for
any degree of the curvature polynomials [31],

‖Rnsn‖ ≤ eC(s) with C(s) = 2|s|
deg∑
n=0

‖λnsn‖ ,
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where deg is the degree of the polynomials. We instantiate this upper-bound
with deg = 2 and find that ‖Rnsn‖ ≤ 2m if C(s) ≤ m ln 2

2
. In double precision

(m = 52), this gives us smax = m∑2
n=0
‖λn‖max

ln 2
2
, assuming smax ≤ 1 and

smax = 3

√
m∑2

n=0
‖λn‖max

ln 2
2

otherwise. Consequently, the more the ribbon is

curled, the more sub-elements are needed to preserve accuracy.

3.2. Discrete mechanical energy

We now have to compute the total potential energy corresponding to our
discrete ribbon kinematics. As before, we focus here on a ribbon made of a
single element, before generalizing to a chain of elements in section 3.3. Recall
that on each element of the ribbon, η and κ1 are polynomials of degree 1 in s,
κ1(s) = as+ b and η(s) = cs+ d.

Discrete Wunderlich energy. By deriving the expressions given in section 2, the
elastic Wunderlich energy (7) becomes

EW = Dw

2 [T (c)P (a, b, c, d)−Q(a, b, c, d)] (14a)

with T (c) = 1
cw

ln
(1 + cw

2

1− cw
2

)
, (14b)

P (a, b, c, d) =
∫ `

0

(as+ b)2
[
1 + (cs+ d)2

]2 ds, (14c)

Q(a, b, c, d) =
∫ `

0

2κN (as+ b)
(
1 + (cs+ d)2

)
ds. (14d)

The only difficulty here is the computation of T which is not defined if
c = ± 2

w . Note that in theory, the smoothness constraint (3) should prevent us
from reaching these bounds. In practice, we have however observed that when
getting close to the bounds, numerical problems arise. In such cases, we instead
use Taylor’s expansion formula T (c) = 1 + 1

3

(
cw
2

)2 + o(c3). We switch to this
formula as soon as

∣∣ cw
2

∣∣ < εT , where εT is an empirical threshold value. In
practice, we have found that choosing εT = 10−5 leads to satisfactory results in
double precision.

Discrete gravitational energy. As mentioned earlier, the length of the ribbon
being much greater than its width, we approximate the potential energy of grav-
ity (9) by concentrating the mass on the centerline, EG ' −

∫ L
0
wρh r(s) · g ds.

This integral can be computed from the power series EG = −
(∑+∞

k=0 Eksk
)
· g,

with 
E0 = 0
E1 = wr0
∀k > 0, Ek+1 = 1

k+1
wrk.

(15)
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3.3. Composition of the pieces

We now consider the general case of a chain of p elements. Recall that for
accuracy purpose, each element itself is subdivided in sub-elements. In previ-
ous section we have defined, for each sub-element, four ready-to-use functions
R(R0, a, b, c, d), r(R0, r0, a, b, c, d), EG(R0, r0, a, b, c, d) and EW(a, b, c, d). The
parameters R0, r0, b, d all depend on previous sub-elements. This dependency
complexifies the derivation of the energy, as the functions are composed as many
times as there are sub-elements.

To connect the elements into a single ribbon, we either need to express each
element as a function of the previous elements, or we can connect each element
to its previous element using a nonlinear constraint. To avoid any accuracy loss
due to the linearization of such a constraint, we choose the first option (meaning
that (3) is the only constraint in our problem).

To retrieve a smooth surface at connections between two elements, it is
sufficient to enforce curvature continuity. For the sake of simplicity, we express
κ1 and η on each element Ei as functions of a local arc length si ∈ [0, `i]. We
thus have κ1(si) = aisi+biloc and η(si) = cisi+diloc, where biloc = bi+

∑i−1
n=0 a

n`n

and diloc = di +
∑i−1
n=0 c

n`n. Continuity conditions thus read

∀i > 0, biloc = ai−1`i + bi−1
loc (16a)

diloc = ci−1`i + di−1
loc , (16b)

hence the full system is parameterized by (b0, d0, a0, c0, a1, c1, · · · , ap−1, cp−1).
When the energy is differentiated, like for sub-elements, composition be-

tween elements should be taken into account, leading to some numerical com-
plexity: typically, the computation of the Hessian of the system is cubic in the
number of elements. Fortunately, the number of elements remains low (around
20). Because of the nature of the system, the numerical implementation is long
and error-prone. During implementation, we have carefully checked analytic
differentiation using comparisons with finite differences.

Despite these challenges, we show in the following that computing the energy,
its gradient and Hessian analytically was worth it: this proved to be crucial in
the success of our overall method for computing the statics of a ribbon.

4. Computating stable equilibria of ribbons

4.1. Robust energy minimization

Because of non-convexity and variable bounds, our local minimization prob-
lem is particularly challenging. We have tried many minimization algorithms
before being able to solve it in a robust way. We eventually rely on the open-
source library Ipopt [29], an interior-point method which, in addition to reg-
ularization and line-searching, handles equality and inequality constraints. We
feed this algorithm with both the gradient and the Hessian of the ribbon en-
ergy, calculated in an analytic way. This algorithm proves to work well in a
large number of scenarios and outperforms other minimization strategies when
considering the following criteria: it never diverges, and is the fastest (table 2).

To better understand the role played by the algorithm with respect to our
problem, we have conducted a number of comparison experiments with various
minimization methods, as reported below. These comparisons allowed us to
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draw some conclusions on the key ingredients that are necessary for a successful
computation of equilibria of our ribbon model,

• Use a second-order approach. We have always observed poor convergence
for methods that do not exploit the information of the exact Hessian;

• Use regularization to deal with a non-positive Hessian robustly;
• Use line-searching to improve convergence;
• Finally, perform minimization on a dimensionless problem. For second-

order minimization strategies, we have observed a speed gain between
×3 and ×10, meaning that non-dimensionalization greatly improves the
conditioning of the linear system to be solved.

In the following we present and compare various standard minimization
methods to justify our final selection of Ipopt.

4.2. Evaluation of various local minimization methods

Many algorithms exist to find a local minimum of a function. We have
compared our final choice, named Ipopt-Hess, against five standard methods
that we remind to the reader below. All these methods correspond to an instance
of the generic minimization algorithm provided in Algorithm 1. For a more
comprehensive survey and analysis of minimization algorithms, we refer the
reader to [37].

Input: E energy function, x starting point
while convergence criterion not reached do
A ← sysMat(E,x);
d← solved{A · d = −∇E(x)} // Descent direction ;
α← stepSize(E, x,d)) // Step ;
x← x + αd;

end
Algorithm 1: Generic minimization algorithm

Here, we assume that the energy is twice-differentiable. At each step a direc-
tion d is computed and the current point x is moved along this direction. The
function stepSize may for example be a line-search that regulates the amplitude
of this movement in order to respect variables bounds and/or energy decrease.
The convergence criterion used is often based on the norm |∇E(x)| of the gra-
dient. When this norm is below a given tolerance, a critical (i.e. minimum,
saddle, or a maximum) point has probably been reached.

First-order methods. First-order methods only use the value of the energy and
its gradient to perform the minimization. The standard gradient descent algo-
rithm, called GradDesc, uses a first-order approximation of the energy and
follows the opposite of the gradient to decrease the energy: sysMat is the iden-
tity, and we take stepSize = 1. After a few iterations, first-order methods
are however generally slow as the gradient becomes small when approaching a
minimum.
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Second-order methods. To increase convergence speed, a second-order approxi-
mation of the energy can be used. In this case, the function sysMat computes
the Hessian HE(x) of the energy. If we still take stepSize = 1, we have a pure
Newton method, called Newton. Near the solution, the error |∇E(x)| is small
and the method benefits from a quadratic convergence. However, this method
only converges to an extremum, not necessarily a minimum. It may also diverge
for a number of reasons: (i) convergence is guaranteed only for convex functions,
which is not the case here, (ii) the second-order approximation is local, if d is
too large, the new point x can be unreasonable, i.e. with too large curvature
variables, and (iii) the term (14b) in the energy can diverge if the constraint
|n| ≤ 2

w , see (3), is not taken into account.
Since the pure Newton method does not necessarily provide a descent direc-

tion in the non-convex case, we introduce a variant called NewtonC. When d
is not a descent direction, i.e. dT HE(x) d < 0, NewtonC switches to a gradi-
ent descent step. Moreover, a line-search is used and the bound check |n| ≤ 2

w
is turned on. Convergence is improved in some cases, but the algorithm of-
ten remains stuck in a gradient descent region, where convergence speed is not
satisfactory.

Finally, NewtonR is yet another variant introduced to cope with non-
convexity. There, sysMat computes the Hessian of the energy and its smallest
eigenvalue µ. If µ < 10−8, the Hessian is regularized by adding 10|µ|I to it. A
line-search complements this method which is virtually as robust and efficient
as Ipopt-Hess.

As a side note, we have also tested NetwonCG, a truncated Newton method
using a modified version of the Conjugate Gradient algorithm. While perform-
ing better than NewtonC, this method proved to be slower than NewtonR,
presumably due to the fact that our Hessian is non-sparse.

Quasi-Newton methods. As explained in section 3.3, the cost of calculating the
gradient increases quadratically with the number of elements, while the cost for
the Hessian increases cubically. Quasi-Newton methods avoid the computation
of the Hessian of the energy. A well-known example is the BFGS algorithm [38]
which builds an approximation of the Hessian, and corrects it at each iteration.
Under a convexity assumption, the approximation is known to converge to the
real Hessian. This method nevertheless requires a larger number of steps which
means a larger number of evaluations of the energy and its gradient, and we
show in table 4.2 that the L-BFGS method from Ipopt is unsatisfactory.

Evaluation. We compare our different numerical strategies to find a target sta-
ble equilibrium configuration. For the sake of simplicity we use here the simpler
Sadowsky model and do not take the smoothness constraint (3) into account
(the influence of this constraint is later discussed in section 5.4). We normalize
the physical quantities with the length L of the ribbon and its bending rigidity
Dw. Consequently, once the Poisson ratio is chosen (we use ν = 0.4) there are
only two dimensionless parameters, Γ = MgL2/(Dw) and KN = κN L, where
M = ρhwL is the total mass of the ribbon and g = 9.81 m/s2 is the acceleration
of gravity. Here we only consider a uniform natural curvature dκN/ds = 0, ∀s.
As illustrated in figure 5, we study three cases of increasing complexity, from a
gently curved, sagging ribbon (KN = −10, Γ = 100) to a highly curved, heavy
ribbon (KN = −100, Γ = 7500). The structure is clamped at one end, and free
at the other. We choose the orientation g = −ex, d1(s = 0) = cosα ex+sinα ey,
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Iterations # {E}a # {∇E}b # {HE}c time (sec)
Ipopt-Hess 43 87 44 43 9.8

Ipopt-L-Bfgs > 1000 d 15379 1001 0 367.5
aNumber of function evaluations
bNumber of gradient evaluations
cNumber of Hessian evaluations
dAlgorithm was stopped at 1000 iterations, even if the convergence was not reached.

Table 1: To test the added value of having access to the Hessian of the energy, we compute
the static equilibrium of a ribbon with Ipopt in two ways: (first line) feeding Ipopt with
the Hessian HE, or (second line) not providing the Hessian but using the L-BFGS option
of Ipopt. We use a ribbon with length L = 50 cm, width w = 0.5 cm, thickness h = 0.1
mm, area density ρ = 2000 kg/m3, Young modulus Y = 1.8 GPa, Poisson ratio ν = 0.5, and
natural normal curvature κN = 80 m−1. The ribbon is clamped with a α = π

4 angle with
respect to the vertical axis.

and d3(s = 0) = ez, with α = π/4. In the minimization routines, the two pa-
rameters KN and Γ are directly set to their targeted values and the routines are
initiated with the natural shape of the ribbon. For the first case we use p = 10
elements, while for the two others we use p = 20.

Results are listed in Table 2 and we see that methods based on pure New-
ton, gradient descent steps (or a mix of the two) are unable to converge to
the equilibrium starting from the natural shape. By contrast, methods mon-
itoring the Hessian matrix and enforcing its positiveness converge in all three
cases. Line-search procedures, present in NewtonR and Ipopt-Hess for exam-
ple, sometimes reduce the step size taken during the Newton iteration, thereby
preventing the algorithm from sending the actual point too far in the energy
landscape.

Figure 5: Three test cases of increasing complexity: (left) KN = 10 and Γ = 100, simulated
with p = 10 elements, (middle) KN = 40 and Γ = 1200, simulated with p = 20 elements,
and (right) KN = 100 and Γ = 7500, simulated with p = 20 elements. The natural shape
is depicted in purple, and energy minimization algorithms are all initialized with the natu-
ral shape. For comparison purposes, the (simpler) Sadowsky energy is considered. Timing
comparisons are provided in Table 2.
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Method KN = 10, Γ = 100 KN = 40, Γ = 1200 KN = 100, Γ = 7500
GradDes - (> 500 steps) - (> 600 steps) - (> 600 steps)

Bfgs 272 steps, 0.5 sec. 506 steps, 6.2 sec. 554 steps, 30 sec.
Newton - (diverges) - (diverges) - (diverges)

NewtonC - (> 500 steps) - (> 500 steps) - (> 500 steps)
NewtonR 14 steps, 0.1 sec. 24 steps, 1.2 sec. 46 steps, 8.6 sec.

Ipopt-Hess 11 steps, 0.09 sec. 23 steps, 0.9 sec. 35 steps, 5.8 sec.
Auto 30 steps, 0.11 sec. 45 steps, 0.16 sec. 167 steps, 0.9 sec.

Shooting 42 steps, 8 sec. 78 steps, 16 sec. 784 steps, 360 sec.

Table 2: Reaching a stable equilibrium with various algorithms, on the three test cases de-
picted in figure 5, using the Sadowsky energy. Among minimization methods applied on our
discrete model (top), only NewtonR and Ipopt-Hess perform robustly: they both combine
exact second-order information and regularization. Among continuation methods using a
strong formulation of ribbons (bottom), Auto proves to be very fast as it even outperforms
best minimization methods applied to our model for a large number of elements. Current
continuation methods are however limited to the Sadowsky energy, and cannot easily accom-
modate the Wunderlich energy nor the smoothness constraint (3), which in contrast are well
accounted for by our approach.

Finally, in order to test whether the numerical difficulties of the first three
minimization methods arise from the non-quadratic elastic energy of the ribbon
model, we have performed the same equilibrium search with the Kirchhoff model
for elastic rods discretized with linear-curvature elements [28]. Overall conver-
gence is somewhat faster and the pure Newton method manages to converge in
this case, but no substantial difference is observed.

5. Results and validation

We have compared our numerical model against various alternative ap-
proaches. These comparisons show the accuracy, robustness, practicability and
versatility of our model, which allows us to envision interesting applications such
as the fast exploration of multiple ribbon static configurations (please refer to
our accompanying video for a better visualization of some results). We addi-
tionally show recent experimental study conducted with the aim of confronting
the model to real scenarios.

5.1. Comparison with the Kirchhoff model for thin elastic rods

We consider a naturally curved ribbon hanging under its own weight. The
ribbon is clamped at one extremity and free at the other. We use the following
physical parameters: length L in the range [1, 50] cm, width w = 1 cm, thickness
h = 0.1 mm, density ρ = 1000 kg/m3, Young’s modulus Y = 1.8 GPa, Poisson’s
ratio ν = 0.5, acceleration of gravity g = 9.81 m/s2. The natural curvature is
chosen to be κN = 60 m−1, hence in its natural state the ribbon is winding on
itself, making approximately 5 turns. We numerically compute the equilibrium
state of the ribbon using our approach with the Wunderlich energy. The struc-
ture is divided into 20 elements, and we start the minimizing procedure with a
flat and horizontal initial state. For a given length L, convergence is reached
after 36 iterations in 2 seconds. Equilibrium states are shown in blue for various
lengths in figure 6-right.
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Next we use the inextensible and unshearable Kirchhoff model [39, 3] for
twisted elastic rods to compute the equilibrium of the system. The Kirchhoff
model is accurate for rods with, for example, circular or rectangle cross-sections
as long as the aspect ratio of the section is not too large. For rectangle sections
with w/h � 1, the ribbon and the Kirchhoff models generate static configu-
rations that can be different from each other, with experiments validating the
ribbon model [12, 13]. The major difference between the two models comes from
the twist-curvature coupling present in the case of the ribbon. In the Kirchhoff
rod model, the elastic energy is a quadratic function of the curvatures

EK(κ1, κ2, κ3) =
∫ L

0

1
2
(
K11(κ1 − κN )2 +K22κ

2
2 +K33κ

2
3

)
ds (17)

where the stiffness coefficients are, for a rectangular section [40]

K11 = Y I1 , K22 = Y I2 , K33 = Y

2(1 + ν) J (18a)

I1 = h3w

12 , I2 = hw3

12 , J = cJ
h3w

3 (18b)

cJ = 1− 192
π5

h

w

∞∑
k=0

tanh (2k+1)πw
2h

(2k + 1)5
. (18c)

In the present case where w = 100h, we have J ' h3w
3

. We choose to recalibrate
the rod bending stiffness Y I1 with its equivalent for ribbons Dw by taking
K11 = Y I1

1−ν2 = Dw. Both models then have the same rigidity compared to
bending in the soft direction. Using physical parameters of the structure, we
evaluateK11 = 0.002, K22 = 15, andK33 = 0.006 mNm2. For the Kirchhoff rod
model, we use the same spatial discretization (i.e. super-clothoids [28]) as above
and also perform the approximation of putting the mass on the center-line. The
energy of gravity is then the same in both models, only the elastic energies differ.
Using the same minimization procedure, we obtain the equilibrium solutions
shown in orange in figure 6-right.

For short lengths, the elastic energy dominates and the structure adopts a
shape close to its natural curvature. Then, from L = 5 cm, gravity is no longer
negligible and the structure unfolds, but remains in the plane. Finally from
L ≈ 29 cm the ribbon swings out of the plane, and torsion appears. We notice
that the two models perfectly coïncide at the beginning and deviate from each
other as soon as torsion comes into play.

One could still wonder whether a more general rod model, which allows for
stretching and shearing, could better approximate the behavior of a ribbon.
In Appendix B, we have performed some simulations based on the Antman rod
model [41], and we show that such a model almost exactly behaves like the
Kirchhoff rod model: the shearing/stretching modes are of no help for modeling
the correct behavior of a ribbon, and we observe a major discrepancy between
our ribbon simulations and rod simulations, whatever the rod model used –
Kirchhoff or Antman. Intuitively, this is due to the fact that none of these
models guarantees the developability of the ribbon surface: as shown in [11], a
ribbon is actually more constrained than the Kirchhoff rod model: relaxing the
Kirchhoff rod model in the hope of capturing ribbon deformations is thus vain.
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9.4 cm 21.4 cm 29 cm 29.4 cm 35.8 cm 42.2 cm

Figure 6: A ribbon cannot be properly simulated using a rod model with a rectangular cross-
section. Here we compare the equilibria generated by our discrete ribbon model (in blue) with
that of the super-clothoid rod model with the same rectangular cross-section (in orange), when
increasing their length. Both models coïncide when the configuration is planar (until L ≈ 29
cm), but substantially diverge when torsion enters the game (see accompanying video).

Figure 7: Comparison of our method (in blue) with the FEniCS-Shell finite element code
implementing the Naghdi shell model (six increasing width/thickness ratios depicted with
different gray levels), under three different viewpoints (see accompanying video).
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5.2. Comparison with the Naghdi thin elastic shell model

Next we study how finite element computations of elastic shells compare
with the elastic ribbon model and with our numerical scheme. We use the first
case of section 4.2 (KN = 10, Γ = 100, and ν = 0.4, Sadowsky’s formula-
tion, see figure 5-left) and compare it to the equilibrium solution of the Naghdi
shell model [42] – a general thin shell theory relying upon a mid-surface com-
bined with straight (but not necessarily normal) transverse directors (so-called
Reissner-Mindlin kinematic assumptions) – with w/L = 0.03 and w/h = 10,
20, 50, 100, and 200. Elastic ribbon models, designed for structures with
L� w � h, are derived from shell theories where the shell stretching and shear-
ing energies are discarded and where the curvature energy is integrated over the
width w. They have been shown to compare well with experiments when the
ratio w/h is large enough, typically w/h > 75, but fail to capture the behavior
of the structure when w/h < 30 [13]. We use the Python-based FEniCS-Shell
finite element library to compute the static solution of the Naghdi shell model.
This implementation includes director parameterization, in the line of [43]. The
shell is discretized over a triangular 100× 4 mesh, using the the partial reduced
selective integration (PRSI) proposed in [44] and adapted to nonlinear shells
in [45]. Continuation takes from two (w/h = 10) to four (w/h = 200) minutes
to reach {KN = 10, Γ = 100}, to be compared with the 0.1 seconds needed for
our ribbon simulator (Table 2). In figure 7, we see that the shell equilibrium
differs from the ribbon equilibrium at low w/h ratios, but eventually converges
to it at large w/h ratios.

5.3. Comparison with continuation methods

An alternative way to find equilibrium3 configurations is to derive differential
equations corresponding to the first variation of the energy of the system. In
Appendix A we list such differential equations and boundary conditions for the
Sadowsky energy (8). To our knowledge, continuation has never been applied to
the Wunderlich energy combined with the inequality constraint (3) and natural
curvature. In this sense, it is less general than our approach.

Continuation methods. The first continuation method we have used is a classi-
cal shooting method. Differential equations are integrated with a stiff solver in
Mathematica [46] and the unknown initial values (n(s = 0) and m(s = 0)) are
found with the numerical root solver of Mathematica. This shooting method
is easy and quick to set up but not robust. The second continuation method
we have used is the Fortran-based Auto [47, 48, 10] package. The spatial
discretization is based on orthogonal collocation involving Lagrange polynomi-
als of degree NCOL and comprising NTST segments. Once discretized, the
boundary value problem takes the form of a nonlinear algebraic system of size
NDIM × NCOL × NTST , where NDIM is the size of the differential sys-
tem (NDIM = 20 in the present case). The algebraic system is solved with a
Newton-Chord method using numerical differentiation for the computation of
the Jacobian (a.k.a. Hessian in the minimization formalism) matrix.

3However, a major difference between energy minimization and continuation methods is
that the former searches for stable configurations, while the latter searches for any critical
configuration. Hence, when comparing the two, we restrict ourselves to stable equilibria.
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Figure 8: Exactly same
configuration found by our
method (blue) and the
shooting method (green).

Cross-validation. We compare the equilibrium shape
obtained using our approach with the shape obtained
with the shooting method. We use the following pa-
rameters: thickness h = 0.1 mm, width w = 1.5 cm,
length L = 50 cm, natural curvature κN = 30 m−1,
density ρ = 1000 kg/m3, Poisson’s ratio ν = 0.5, and
Young’s modulus Y = 1.8 GPa. Both shapes, plotted
in figure 8, are identical, which validates our approach
on the Sadowsky model.

Timing comparisons. We consider again the three
test cases studied in section 4.2 and illustrated in fig-
ure 5. This time we seek to obtain the stable equilib-
rium configurations by continuation.

In the continuation routines KN is set directly
to its targeted value and Γ is gradually increased
from Γ = 0 to the desired target value. For each
intermediate Γ value an equilibrium configuration is computed in our shooting
routine in Mathematica, and in Auto with a polynomial degree NCOL = 4
and NTST = 10 elements for the first case, NTST = 15 elements for the second
case, and NTST = 35 elements for the third case. As reported in table 2, the
fastest routine is the continuation method Auto even if the number of steps
(i.e. intermediate values of Γ visited) is larger than in the minimization rou-
tines. (Note that in addition, a Newton correction is used in Auto at each
intermediate Γ value.)

On the Sadowsky problem, Auto thus proves more efficient than best min-
imization algorithms performed on our discrete energy, especially for a large
number of elements. However, continuation approaches cannot easily handle
inequality constraints in general. In particular the inequality (3) of the Wun-
derlich model is challenging to account for. To the best of our knowledge, only
[9] so far has proposed to tackle this constraint within a continuation method,
by adding a regularization term to the Wunderlich energy. However, the authors
acknowledge that this ad-hoc solution perturbs the ribbon equilibrium solutions
as the width w increases, which makes it only suitable for a moderate range of
widths. For large ribbons (large w), the Wunderlich constraint becomes crucial,
and we show in the following that removing this constraint from the model may
lead to fatal numerical issues. In contrast, our more versatile approach allows
us to account for this constraint properly.

5.4. Active Wunderlich constraint

We now use the Wunderlich model and show a case where the inequality
constraint (3) is active4, i.e. ∃s∗/|η′(s∗)|w = 2. We use the following physical
parameters: length L = 32 cm, width w = 2 cm, thickness h = 0.1 mm,
density ρ = 2000 kg/m3, Young’s modulus Y = 2.016 GPa, Poisson’s ratio
ν = 0.4, uniform natural curvature κN = −31.25 m−1, and g = −g ex with
the acceleration of gravity g = 9.81 m/s2. The clamp at s = 0 is oriented with

4As the Wunderlich elastic energy diverges when the constraint is active and since the
solver only handles large inequalities, we numerically set the bound to 2− ε with ε = 10−8
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Figure 9: Configuration where bounds are reached. Left and middle: results obtained using
the Sadowsky model, (left) without and (middle) with the Wunderlich constraint (3). Right:
result using the Wunderlich model and the constraint (3), and zoom on the region where
the constraint is active (convergence of the rulings close to the boundary). Without the
Wunderlich constraint, simulating the Wunderlich model leads to fatal numerical issues.

α = π/4. After normalization with the length L and the bending rigidity Dw of
the ribbon, the two dimensionless parameters are Γ = 321.454 and KN = −10.
We use Ipopt-Hess with p = 40 elements to minimize the Wunderlich energy
under the inequality constraint (3). We start the minimization routine with a
state with uniform curvatures κ1(s) = −κN , and κ3(s) = 0, ∀s. The equilibrium
solution is reached in 7.5 seconds and 38 iterations. This state has intersecting
rulings near s = 9 cm, see figure 9.

5.5. Multiple solutions

A B C D E

Figure 10: Five concurrent equilibria with KN = −8 and Γ = 85, using p = 20 elements.
The natural state is shown in purple, the initial state for the solving routine in green, and the
equilibrium state in navy blue/turquoise. Please note that for visualization purposes, ribbons
are displayed here with an increased thickness.

The nonlinear problem of finding equilibria of elastic ribbons may have sev-
eral concurrent solutions. We illustrate this possibility by selecting parameter
values for which at least five (plus two symmetric solutions) different solutions
exist. We work with dimensionless quantities and set KN = −8, Γ = 85,
ν = 0.4, and p = 20. Some of these solutions have proven difficult to find:
shooting procedures based on the Sadowsky formulation failed to find them.
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Consequently, we turn to the Wunderlich formulation along with the inequal-
ity constraint (3) (that sometimes prevents the minimization procedure to go
haywire) and therefore fix the dimensionless width, w/L = 0.03. We choose the
orientation g = −ex and α = π/2. We use Ipopt to find the stable equilibrium
solutions. Feeding the algorithm with different initial states, we isolate two such
solutions, see (A) and (E) in figure 10. These two solutions are 3D and twisted
(η(s) 6= 0) and each has a symmetrical twin, not shown here. Additionally, we
isolate three planar (r(s) · ey = 0, ∀s) and untwisted (η(s) = 0, ∀s) solutions
with the pure Newton routine, see (B), (C), and (D) in figure 10. These solu-
tions are saddle points in the energy landscape and are therefore unstable: we
had to use the pure Newton routine, solving for roots of the gradient of the
energy instead of minimizing the energy itself.

5.6. Comparison with experiments

Currently we are developing a systematic protocol to validate simulators of
slender structures. Generally speaking, by means of computer vision techniques,
we are able to capture and reconstruct 3D deformed physical objects and project
them on images with simulated results. For this work, we use ribbons sagging
under their own weight, and the range in which such a problem is well defined,
w/h � 1 and 200 > Γ = 12(1 − ν2)ρgL3/(Y h3) > 10 and L/w > 10, limits
the dimensions of model specimens and puts constraints on materials manu-
facturing and characterization. We have found that the best option is to work
with commercial polymeric plastics such as BoPP (Bi-Oriented Polypropylene),
BoPET (Bi-Oriented Polyethylene Terephthalate), Acetate (butylene adipate-
co-terephthalate), or PVC (PolyVinyl Chloride) with Elastic moduli in the 2−4
GPa range, and density around 103 kg/m3. These polymeric plastics are com-
mercially available with thicknesses in the range [50− 500]µm. Such materials
are elastic within the deformation we are expecting, but they are not completely
isotropic. Furthermore their mechanical parameters vary from sample to sam-
ple or are difficult to measure (in particular Poisson’s ratio). Hence it proves
difficult, for a given experiment, to accurately simulate complex configurations,
i.e. with large torsion.

Nevertheless, there are some basic configurations where we are able to quan-
titatively or/and qualitatively compare numerics with experiments. In this sec-
tion we begin by showing a perfect agreement between our simulations, ex-
periments, and theory for the simple cantilever case with no torsion and no
natural curvature. Next, we compare a clamped naturally curved ribbon with
the output of our simulator. In this case we found that, despite the match is
not perfect, most of the geometrical characteristics are well generated by our
synthetic output.

Cantilever experiment

A variation of the well-known Galileo cantilever is commonly used in me-
chanics of soft elastic objects to estimate material parameters. It consists of
a horizontally clamped elastic object with a free end, deformed by the action
of gravity, as depicted in the inset of figure 11. The global aspect ratio of the
deformed shape (vertical divided by horizontal positions of free end) follows a
master curve when plotted against the non-dimensional gravito-bending param-
eter Γ.
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Figure 11: Aspect ratio y/x of the deformed shape of a sagging cantilever, as a function of
the gravito-bending parameter Γ, evaluated in four ways: linear theory, y/x = Γ/8 valid for
small Γ, planar elastica computations, elastic ribbons computations, and experiments.

To test our code, we set simulations of naturally flat ribbons with fixed width
(w = 5cm), density (ρ = 1200kg/m3), thickness (h = 1mm), and Poisson’s
Ratio (ν = 0.5), and span the Elastic modulus in the range Y ∈ [0.5 − 100]
MPa and the length within a range L ∈ [5 − 90] cm. For each of the 2500
simulations we measure the horizontal (x) and vertical (y) components of the
position of the ribbon free end, and plot the aspect ratio (y/x) as a function of
Γ in fig. 11. Next, we numerically solve the equations for a planar elastica with
bending rigidity Y h3w/(12(1 − ν2)) and show the result as a solid red line in
figure 11. Finally, we run a series of experiments (green squares) with nominally
flat ribbons. We first independently estimate Y/(1 − ν2) for each ribbon as
described in appendix B in [49]. We measure the aspect ratios (y/x) of the
deformed shapes and plot them as a function of Γ in green in fig. 11. A perfect
agreement between experiments and ribbon and elastica simulations is observed
for the large range of studied Γ values.

3D deformations for naturally curved ribbons

We now turn to the more interesting case of naturally curved ribbons. The
main challenges here are manufacturing such ribbons and accurately estimating
both their Young modulus and Poisson’s ratio. Inspired by the method described
in [50], we fabricate curly ribbons by winding flat specimens around a metallic
cylinder, keeping them at 80 degrees Celsius for 24 hours, and finally letting
them cool down while still attached to the cylinder. We tested several materials
and observed that only PVC and BoPET adopt an acceptable circular shape,
but we find that the resulting radius of curvature is in general larger than that
of the metallic cylinder.

In figure 12 we show two perpendicular views for one experimental realization
with a sample made out of BoPET (right panels for each view). We measured
the ribbon’s thickness to be 100µm, its length 290mm, its natural curvature
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26.7m−1, its width 30mm, and density 1253kg/m3. For the ribbon’s elastic
parameters we estimated that the value of Y/(1−ν2) is in the range of 2−4MPa.
Since we are dealing with high torsion, Poisson’s ratio plays an important role
in the final shape, but we are not able yet to obtain a precise estimation of it,
thus we use the classical value ν = 0.4.

Figure 12: Side by side comparison between simulations (blue) and experiments (gray). Left
pair shows a front view and right pair a side view.

For capturing the images of the ribbon, we use a rig with a camera and
a mirror. We calibrate the corresponding views as pinhole model cameras, as
described in [51]. This technique, together with a marker, allows us to measure
experimentally the material frame orientation at the clamp (red, green and blue
arrows in the experimental images represent {d1(0),d2(0),d3(0)} respectively).
Thus the initial frame is fed into the simulator in addition to the elastic and
geometrical parameters. As a result, we obtain a synthetic deformed shape for
the ribbon (blue), see figure 12.

It is important to mention that for computing the simulated ribbon, we did
fine tune the value of Y/(1− ν2) to be 4MPa, which is in the high limit of the
estimated range. For a full validation of our model, in the future we will need
to figure out a more accurate way to estimate the elasticity of the experimental
ribbons.

6. Conclusion and future work

We have proposed a robust and accurate computational approach dedicated
to the statics of inextensible elastic ribbons, relying on the recent Wunderlich
model. The key of our discrete model is to combine curvature-based elements
with reduced parameterization, analytic computation of all kinematic and static
terms based on power series, including the Hessian of energy, and robust second-
order minimization of energy under the Wunderlich constraint. We have tested
our method on various ribbon configurations, from straight to highly curly, and
have always observed excellent convergence in reasonable timings (a few seconds
for 20 elements). Moreover, we have highlighted the value of carefully treating
the Wunderlich energy together with the smoothness constraint. Less versatile
approaches limited to the simpler Sadowsky energy, like current continuation
methods, may lead to wrong ribbon configurations and/or serious numerical is-
sues when encountering configurations close to the Wunderlich bounds. Finally,
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we have shown in our comparisons that a numerical model dedicated to rib-
bons is perfectly justified: rod models are inappropriate to capture the specific
twist-curvature coupling of ribbons as they do not preserve inextensibility of the
surface, while a generic shell model may reach the limit case of a thin ribbon
but at the price of much heavier computations.

All of this makes our discrete model a practical tool suitable for exploring
a wide range of new ribbon equilibrium configurations. In the future we hope
to enrich the space of configurations by treating clamped-clamped boundary
conditions, as well as self-contact and friction. We would also like to extend our
experimental validation setup to a wider range of ribbon configurations.
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Appendix A. Strong formulation of the equilibrium of a Sadowsky
ribbon

We list the system of differential equations describing the equilibrium of
a ribbon with natural curvature κN in the approximation of the Sadowsky en-
ergy [11, 9]. We normalize the physical quantities with the length L of the ribbon
and its bending rigidity Dw. Besides the Poisson ratio ν, only two dimension-
less parameters remain: Γ = ρhgL3/D and KN = κN L. Vector components
in the canonical basis are written with (x, y, z) indices and components in the
material frame are written with (1, 2, 3) indices. The strong formulation of the
equilibrium equations introduces the internal force n and moment m. We recall
that we are in the case where

κ2(s, t) = 0 ∀ (s, t) (A.1)

and that we replace κ3(s) by η(s)κ1(s). The nonlinear constitutive relation
reads

m1 =
(

1− κ4
3

κ4
1

)
κ1 −KN

(
1− ν κ

2
3

κ2
1

)
(A.2a)

m3 = 2
(

1 + κ2
3

κ2
1

)
κ3 − 2KNν

κ3

κ1

(A.2b)

As explained in [13] using (A.2) would result in having to deal with a differential-
algebraic system, which we wish to avoid. Consequently we differentiate (A.2)
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and solve for κ′1 and κ′3 to write

κ′1 = κ3
1

(κ2
1 + κ2

3)2

κ1m
′
1 (−KNνκ1 + κ2

1 + 3κ2
3) + κ3m

′
3 (−KNνκ1 + 2κ2

3)
−KNνκ1 + κ2

1 + κ2
3

(A.3a)

κ′3 = κ2
1

2 (κ2
1 + κ2

3)2

2κ1 κ3m
′
1 (−KNνκ1 + 2κ2

3) +m′3 (κ4
1 − 2KNνκ1κ

2
3 + 3κ4

3)
−KNνκ1 + κ2

1 + κ2
3

(A.3b)

These two equations are coupled with the classical (Kirchhoff-like) equations for
position, equilibrium of force and moment

r′x = d3x , n′1 = n2 κ3 − n3κ2 − f1 , m′1 = m2 κ3 −m3κ2 + n2 (A.4a)
r′y = d3y , n′2 = n3 κ1 − n1κ3 − f2 , m′2 = m3 κ1 −m1κ3 − n1 (A.4b)
r′z = d3z , n′3 = n1 κ2 − n2κ1 − f3 , m′3 = m1 κ2 −m2κ1 (A.4c)

and material frame

d′1x = κ3 d2x − κ2 d3x , d′1y = κ3 d2y − κ2 d3y , d′1z = κ3 d2z − κ2 d3z (A.5a)
d′2x = κ1 d3x − κ3 d1x , d′2y = κ1 d3y − κ3 d1y , d′2z = κ1 d3z − κ3 d1z (A.5b)
d′3x = κ2 d1x − κ1 d2x , d′3y = κ2 d1y − κ1 d2y , d′3z = κ2 d1z − κ1 d2z ,(A.5c)

with fi = Γ di · g
‖g‖ , i = 1, 2, 3. The boundary condition at the clamp, s = 0,

reads

r(0) = r0 , d1(0) = R0 · ex , d2(0) = R0 · ey , d3(0) = R0 · ez (A.6)

and the boundary conditions are the free end, s = 1, are

n1(1) = 0 = n2(1) = n3(1) and m1(1) = 0 = m2(1) = m3(1) (A.7)

Appendix B. Comparison with a shearable rod model

In this Section, we compare the Sadowsky model for elastic ribbon to Antman’s
rod model, which includes shear and extensional deformations [41]. We consider
a structure of length L with rectangular cross-section of width w and thick-
ness h and we compute the equilibrium of the structure in the clamp-free setup
used throughout this report. The Antman model is the 3D version of the Reiss-
ner model [52] for elastic beams bent in the plane, and is an extension of the
Kirchhoff model in the sense that both shear and extensional deformations are
possible. The shear v1(s), v2(s) and extension v3(s) components are introduced
to express the tangent to the centerline in the Cosserat frame as

r′x = v1 d1x + v2 d2x + v3d3x (B.1a)
r′y = v1 d1y + v2 d2y + v3d3y (B.1b)
r′z = v1 d1z + v2 d2z + v3d3z. (B.1c)

Shear and extension are related to the internal force n through a linear rela-
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Figure B.13: Comparison of three models for the statics of an elastic ribbon with L = 30w,
w = 10h, KN = κN L = 10, and ν = 0.4. We plot the end-to-end distance in the plane or-
thogonal to the gravity direction,

√
y2(1) + z2(1), as a function of Γ = 12(1−ν2)ρgL3/(Y h3).

tionship written in the Cosserat frame,

v1 = n1

H1

, v2 = n2

H2

, v3 = 1 + n3

H3

, (B.2)

where we take H1 = Y
2(1+ν)

hw = H2 and H3 = Y hw. Note that the precise
definition of the stiffness coefficient H1,2 may differ in the literature where (near
unity) prefactors are sometimes included [53]. We recall that the Kirchhoff
model is the limit case

1
H1

→ 0 , 1
H2

→ 0 , 1
H3

→ 0. (B.3)

Next, the bend-twist constitutive relation is the same as in Kirchhoff’s model,

m1 = K11(κ1 − κN ) , m2 = K22κ2 , m3 = K33κ3 (B.4)

with the stiffness coefficients given in (18). Classical balance equations for linear
and angular momentum read, in component form,

n′1 = n2 κ3 − n3κ2 − f1 m′1 = m2 κ3 −m3κ2 + n2v3 − n3v2 (B.5a)
n′2 = n3 κ1 − n1κ3 − f2 m′2 = m3 κ1 −m1κ3 + n3v1 − n1v3 (B.5b)
n′3 = n1 κ2 − n2κ1 − f3 m′3 = m1 κ2 −m2κ1 + n1v2 − n2v1. (B.5c)

The system of equations is closed to the Darboux equations, listed in (A.5). The
set of equations is then made dimensionless using L as unit length and K11/L

2

as unit force. Dimensionless equations are readily obtained by performing the
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Figure B.14: Comparison of three models for the statics of an elastic ribbon with L = 30w,
w = 10h, KN = κN L = 10, and ν = 0.4. We show the deformed shape of the structure
at Γ = 12(1 − ν2)ρgL3/(Y h3) = 80. We use the same color conventions as for figure B.13,
and, we draw the natural shape of the ribbon in purple. The shapes given by the Kirchhoff
and Antman models are virtually the same, but clearly differ from the shape given by the
Sadowsky model.

following replacements,

K11 = 1 K22 =
(w
h

)2

K33 = 2 cJ
1 + ν

(B.6)

1
H1

= 1 + ν

6

(
h

L

)2 1
H2

= 1 + ν

6

(
h

L

)2 1
H3

= 1
12

(
h

L

)2

(B.7)

where cJ is defined in (18c). In typical situations where L � w, the non-
dimensionalized coefficients H1,2,3 � 1 and hence v1 and v2 are small and v3

near unity, unless internal forces n1,2,3 are large. As the typical scale of the
internal force in our clamped-free situation is given by the weight, we conclude
that as long as Γ �

(
L
h

)2, the Antman and Kirchhoff models yield similar
results.

In order to illustrate this fact, we compute the equilibrium solution for Γ ∈
(0; 100), L = 30w, w = 10h, and a dimensionless natural curvature KN =
κN L = 10 for the three models: Sadowsky, Kirchhoff, and Antman. We plot
in figure B.13 the end-to-end distance in the plane orthogonal to the gravity
direction,

√
y2(1) + z2(1), as a function of Γ. We note that the curves from the

Kirchhoff and Antman models are virtually indistinguishable, while they stand
clearly apart from the curve of the Sadowsky model. In addition, we show in
Figure B.14 the shapes given by the three models for Γ = 80 and observe again
that shapes from the Kirchhoff and Antman models are indistinguishable.
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