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Motivation

e Fibers assemblies are common in the real world
e But not much studied in the past

e Contact and dry friction play a major role w.r.t. shape and motion
(volume, stable stacking, nonsmooth patterns, nonsmooth dynamics)
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Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models

® Continuum-based [Hadap and Magnenat-Thalmann 2001]
— Hair medium governed by fluid-like equations
® Macroscopic, intrinsic interaction model
@ No discontinuities
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Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models

® Wisp-based (or fiber-based) [piante et al. 2001]
— A set of strands primitives combined with a simple interaction model
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Main motivation
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Three families of models
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Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models

® Wisp-based (or fiber-based) [piante et al. 2001]
— A set of strands primitives combined with a simple interaction model
® Allows for fine-grain simulations [sele et al. 2008]
® Lack of stability if penalties used
® Many contacts omitted — lack of volume -
@® No dry friction (viscous model) &){
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Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models

© Mixed of the two others [Mc Adams et al. 2009]
— A mixed Eulerian-Lagrangian contact formulation
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Main motivation
Hair simulation in Computer Graphics

Three families of models

©® Mixed of the two others [Mc Adams et al. 2009]
— A mixed Eulerian-Lagrangian contact formulation
® Global volume preservation together with detailed features
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Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models

©® Mixed of the two others [Mc Adams et al. 2009]
— A mixed Eulerian-Lagrangian contact formulation
® Global volume preservation together with detailed features
@ Still no dry friction
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Frictional contact in Computer Graphics

In contrast, dry friction has been considered
for a long time in Computer Graphics
for the simulation of rigid bodies
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Frictional contact: Previous work

Ideal model for frictional contact
Non-penetration 4+ Coulomb friction

unN Z 0
(u,1) € Cle, p)
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Frictional contact: Previous work

Ideal model for frictional contact
Non-penetration 4+ Coulomb friction

Most robust approach

|mp||C|t constrained-based [Baraff 1994, Erleben 2007, Kaufman et al. 2008, Otaduy et al. 2009]
— Global formulation where velocities and contact forces are unknown
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Implicit constrained-based methods, in practice

Common approximation in Computer Graphics

Linearization of the Coulomb friction cone
— Formulation of a Linear Complementarity Problem (LCP)
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Implicit constrained-based methods, in practice

Common approximation in Computer Graphics

Linearization of the Coulomb friction cone
— Formulation of a Linear Complementarity Problem (LCP)

® A bunch of solvers available
® Important drift when using too few facets
@® Increasing the number of facets results in an explosion of variables
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Implicit constrained-based methods, in practice

In contrast...
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Implicit constrained-based methods, in practice

In Computational Mechanics
Exact Coulomb law numerically tackled for decades
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Implicit constrained-based methods, in practice

In Computational Mechanics
Exact Coulomb law numerically tackled for decades

e Main application: simulation of granulars [Moreau 1994, Jean 1999]

e A well-known, exact approach: the [alart and curier 1901] functional formulation
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Contributions

e Design a generic Newton algorithm for exact Coulomb friction in fiber
assemblies, relying on the Alart and Curnier functional formulation

e |dentify a simple criterion for convergence: no over-constraining
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Outline

Formulating Contact in Fiber Assemblies
A Newton Algorithm for Exact Coulomb Friction
Results and Convergence Analysis

Discussion and Future Work

6

SIGGRAPH2011



Outline

Formulating Contact in Fiber Assemblies




Fiber model

Kirchhoff model for thin elastic rods

e Inextensible
e Elastic bending and twist
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Kirchhoff model for thin elastic rods

e Inextensible
e Elastic bending and twist

In practice, three rod models used
e Implicit mass-spring system [Baraff et al. 1998]
e CORDE model [Spillmann et al. 2007]

e Super-helices (Bertails et al. 2006]
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Kirchhoff model for thin elastic rods

e Inextensible
e Elastic bending and twist
In practice, three rod models used
e Implicit mass-spring system [Baraff et al. 1998]
e CORDE model [spillmann et al. 2007]

e Super-helices (Bertails et al. 2006]
— We define a generic discrete rod model:

Myv+f=0 and u=Hv-+w

Fiber model
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Fiber assembly: One-step problem

e Global system (with frictional contact):

= Hv+4w (1)

Mv+f = Hr
u
(u,r) satisfies the Coulomb's law
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Fiber assembly: One-step problem

e Global system (with frictional contact):

= Hv+w (1)

Mv+f = Hr
u
(u,r) satisfies the Coulomb's law

o Compact formulation in (u, r):

u = Wr+gq 2)
(u,r) satisfies the Coulomb's law

where W = HM™1H" is the Delassus operator
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A Newton Algorithm for Exact Coulomb Friction




Coulomb’s law: disjonctive formulation

A

Let 1 > 0 be the friction coefficient.
We define the second-order cone K,

K = {llrll < pr} © B?
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Let 1 > 0 be the friction coefficient.
We define the second-order cone K,
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Coulomb’s law: disjonctive formulation

r
Let o > 0 be the friction coefficient.

We define the second-order cone K,

K. = {lIr < pn} C B2

Frictional contact with Coulomb’s law (~ 1780)

either take off r=0and u, >0

(u,r) € Cle, p) < or stick re K,and u=20
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Coulomb’s law: disjonctive formulation

Let o > 0 be the friction coefficient.
We define the second-order cone K,

K. = {lIr < pn} C B2

Frictional contact with Coulomb’s law (~ 1780)

either take off r=0and u, >0

(u r) c C(e ,u) — or stick re K,and u=20
) ) or slide re aKM \ 0, uy =0 ,
_ Z
and da >0, u; = —arr

SIGGRAPH2011



Coulomb’s law: functional formulation

Idea
Express Coulomb’s law as f(u, r) = 0 with f a nonsmooth function
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Coulomb’s law: functional formulation

Idea
Express Coulomb’s law as f(u, r) = 0 with f a nonsmooth function

Alart and Curnier formulation (1991)

Pr+(rv — pnun) — Iy ]

fAC(u r) = fi(u,r) _
’ Pgoury)(rr — pTur) — 11

FA(u, r)

where py, p7 € RY and Pk is the projection onto the convex K.

(ur) e Cle) = F(ur)=0|
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Nonsmooth Newton on the Alart-Curnier function

Formulation of the one-step problem

u = Wr+gq
fAC(u,r) = 0
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Nonsmooth Newton on the Alart-Curnier function

Formulation of the one-step problem

u = Wr+gq
fAC(u,r) = 0

& FAYWr4q,r)=d(r) =0
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Nonsmooth Newton on the Alart-Curnier function

Formulation of the one-step problem

u = Wr+gq
fAC(u,r) = 0

& FAYWr4q,r)=d(r) =0
Solving method: (damped) Newton algorithm
o We minimize ||®(r)]|?

e Requires the computation of V& (subgradients)
e Natural stopping criterion: % ||®(r)||> < e
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Outline

Results and Convergence Analysis
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Results

SIGGRAPH2011



Convergence issues

In theory...

e No proof of existence of a solution to the one-step problem

 No proof of convergence (nonsmooth function)
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Convergence issues

In theory...

e No proof of existence of a solution to the one-step problem

 No proof of convergence (nonsmooth function)

In practice

e Our fiber problems are likely to possess a solution [cadoux 2009]

e We found an empiric criterion for convergence
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Convergence analysis

3 Ncontacts
Ndofs

o Let us define v =
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Convergence analysis

o Let us define 1/ — 2/contacts oasiacts

e Note that if v > 1 (ovef—constrained system), W is singular
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Convergence analysis

o Let us define 1/ = 2o

e Note that if v > 1 (over-constrained system), W is singular

e In practice, reasonable convergence properties when v <1
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Even quadratic convergence in favorable cases
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Convergence analysis

Let us define 1/ — fcontaces S

Note that if v > 1 (over-constrained system), W is singular
In practice, reasonable convergence properties when v <1
Even quadratic convergence in favorable cases

Slow (or no) convergence when v > 1 (over-constrained systems)
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convergence time (spaghetti 31/16)

Convergence illustration

convergence time (spaghetti 76/16)
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Convergence analysis

Let us define 1/ — fcontaces S

Note that if v > 1 (over-constrained system), W is singular
In practice, reasonable convergence properties when v <1
Even quadratic convergence in favorable cases
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Convergence analysis

Let us define 1/ — fcontaces

Ndofs

Note that if v > 1 (over-constrained system), W is singular

In practice, reasonable convergence properties when v <1

Even quadratic convergence in favorable cases

e Slow (or no) convergence when v > 1 (over-constrained systems)

— v plays the role of a conditioning number for our problem
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Convergence analysis

Let us define 1/ — fcontaces

Ndofs
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Convergence analysis

Let us define 1/ — fcontaces

Ndofs

Note that if v > 1 (over-constrained system), W is singular

In practice, reasonable convergence properties when v <1

Even quadratic convergence in favorable cases

e Slow (or no) convergence when v > 1 (over-constrained systems)

— v plays the role of a conditioning number for our problem

— better suited for assemblies of compliant models than rigid bodies

— for over-constrained systems, a splitting strategy seems more appropriate
2
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Outline

Discussion and Future Work
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Conclusions

Contributions
e A generic Newton solver for capturing exact Coulomb friction in fibers
Relying on the Alart and Curnier functional formulation

e A simple criterion for convergence

Based on the degree of constraining of the system
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Conclusions

Contributions
e A generic Newton solver for capturing exact Coulomb friction in fibers
Relying on the Alart and Curnier functional formulation

e A simple criterion for convergence

Based on the degree of constraining of the system

Source code
The source code for our solver is freely available on
http://www.inrialpes.fr/bipop/people/bertails/Papiers/nonsmoothNewtonSolverTOG2011.html
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Limitations and Future work

Limitations

e Slow (or no) convergence for over-constrained systems

e Does not scale up well (tens to hundreds fibers vs. thousands fibers)

(N

SIGGRAPH2011



Limitations and Future work

Limitations

e Slow (or no) convergence for over-constrained systems

e Does not scale up well (tens to hundreds fibers vs. thousands fibers)

Future work

e Design a robust solver for thousands densely packed rods
o Carefully validate the (hair) collective behavior against real experiments

e Build a macroscopic model for fibrous media (nonsmooth laws)
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Recent advance

Follow-up

e An improved functional formulation for exact Coulomb friction

e A splitting algorithm dedicated to large hair problems
— In practice, this modified solver works very well for complex scenarios
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