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Motivation

• Fibers assemblies are common in the real world
• But not much studied in the past
• Contact and dry friction play a major role w.r.t. shape and motion

(volume, stable stacking, nonsmooth patterns, nonsmooth dynamics)
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Main motivation
Hair simulation in Computer Graphics

Three families of models
1 Continuum-based [Hadap and Magnenat-Thalmann 2001]

→ Hair medium governed by fluid-like equations
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Main motivation
Hair simulation in Computer Graphics

Three families of models
2 Wisp-based (or fiber-based) [Plante et al. 2001]

→ A set of strands primitives combined with a simple interaction model
Allows for fine-grain simulations [Selle et al. 2008]

Lack of stability if penalties used
Many contacts omitted → lack of volume
No dry friction (viscous model)
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Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models
3 Mixed of the two others [Mc Adams et al. 2009]

→ A mixed Eulerian-Lagrangian contact formulation
Global volume preservation together with detailed features
Still no dry friction



Frictional contact in Computer Graphics

In contrast, dry friction has been considered
for a long time in Computer Graphics
for the simulation of rigid bodies
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Ideal model for frictional contact
Non-penetration + Coulomb friction

Most robust approach
Implicit constrained-based [Baraff 1994, Erleben 2007, Kaufman et al. 2008, Otaduy et al. 2009]

→ Global formulation where velocities and contact forces are unknown
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A bunch of solvers available
Important drift when using too few facets
Increasing the number of facets results in an explosion of variables



Implicit constrained-based methods, in practice

Common approximation in Computer Graphics
Linearization of the Coulomb friction cone

→ Formulation of a Linear Complementarity Problem (LCP)

A bunch of solvers available

Important drift when using too few facets
Increasing the number of facets results in an explosion of variables



Implicit constrained-based methods, in practice

Common approximation in Computer Graphics
Linearization of the Coulomb friction cone

→ Formulation of a Linear Complementarity Problem (LCP)

A bunch of solvers available
Important drift when using too few facets
Increasing the number of facets results in an explosion of variables



Implicit constrained-based methods, in practice

In contrast...



Implicit constrained-based methods, in practice

In Computational Mechanics
Exact Coulomb law numerically tackled for decades

• Main application: simulation of granulars [Moreau 1994, Jean 1999]

• A well-known, exact approach: the [Alart and Curnier 1991] functional formulation
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In Computational Mechanics
Exact Coulomb law numerically tackled for decades

• Main application: simulation of granulars [Moreau 1994, Jean 1999]

• A well-known, exact approach: the [Alart and Curnier 1991] functional formulation



Contributions

• Design a generic Newton algorithm for exact Coulomb friction in fiber
assemblies, relying on the Alart and Curnier functional formulation

• Identify a simple criterion for convergence: no over-constraining
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Fiber model
Kirchhoff model for thin elastic rods

• Inextensible
• Elastic bending and twist

In practice, three rod models used
• Implicit mass-spring system [Baraff et al. 1998]

• Corde model [Spillmann et al. 2007]

• Super-helices [Bertails et al. 2006]

→ We define a generic discrete rod model:

Mv + f = 0 and u = H v + w



Fiber model
Kirchhoff model for thin elastic rods

• Inextensible
• Elastic bending and twist

In practice, three rod models used
• Implicit mass-spring system [Baraff et al. 1998]

• Corde model [Spillmann et al. 2007]

• Super-helices [Bertails et al. 2006]

→ We define a generic discrete rod model:

Mv + f = 0 and u = H v + w



Fiber model
Kirchhoff model for thin elastic rods

• Inextensible
• Elastic bending and twist

In practice, three rod models used
• Implicit mass-spring system [Baraff et al. 1998]

• Corde model [Spillmann et al. 2007]

• Super-helices [Bertails et al. 2006]

→ We define a generic discrete rod model:

Mv + f = 0 and u = H v + w



Fiber assembly: One-step problem

• Global system (with frictional contact):
M v + f = H>r
u = H v + w
(u, r) satisfies the Coulomb’s law

(1)

• Compact formulation in (u, r):{
u = W r + q
(u, r) satisfies the Coulomb’s law (2)

where W = H M−1 H> is the Delassus operator
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Coulomb’s law: disjonctive formulation

Let µ ≥ 0 be the friction coefficient.
We define the second-order cone Kµ,

Kµ = {‖rT‖ ≤ µrN} ⊂ R3

Frictional contact with Coulomb’s law (≈ 1780)

(u, r) ∈ C(e, µ) ⇐⇒



either take off r = 0 and uN > 0
or stick r ∈ Kµ and u = 0
or slide r ∈ ∂Kµ \ 0, uN = 0

and ∃α ≥ 0, uT = −α rT
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Coulomb’s law: functional formulation

Idea
Express Coulomb’s law as f (u, r) = 0 with f a nonsmooth function

Alart and Curnier formulation (1991)

fff AC (u, r) =

[
f AC
N (u, r)

fff AC
T (u, r)

]
=

[
PR+(rN − ρNuN) − rN
PBBB(0,µrN)(rT − ρT uT ) − rT

]
where ρN , ρT ∈ R∗+ and PK is the projection onto the convex K .

(u, r) ∈ C(e, µ) ⇐⇒ fff AC (u, r) = 0
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Nonsmooth Newton on the Alart-Curnier function

Formulation of the one-step problem{
u = W r + q
fff AC (u, r) = 0

⇔ fff AC (W r + q, r) = Φ(r) = 0

Solving method: (damped) Newton algorithm

• We minimize ‖Φ(r)‖2

• Requires the computation of ∇Φ (subgradients)
• Natural stopping criterion: 1

2 ‖Φ(r)‖2 < ε
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Convergence issues

In theory...

• No proof of existence of a solution to the one-step problem
• No proof of convergence (nonsmooth function)

In practice

• Our fiber problems are likely to possess a solution [Cadoux 2009]

• We found an empiric criterion for convergence
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Convergence analysis

• Let us define ν = 3 ncontacts
ndofs

• Note that if ν > 1 (over-constrained system), W is singular
• In practice, reasonable convergence properties when ν ≤ 1
• Even quadratic convergence in favorable cases
• Slow (or no) convergence when ν > 1 (over-constrained systems)

→ ν plays the role of a conditioning number for our problem
→ better suited for assemblies of compliant models than rigid bodies
→ for over-constrained systems, a splitting strategy seems more appropriate
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Convergence illustration

Convergence time (in seconds) function of ν
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Conclusions

Contributions
• A generic Newton solver for capturing exact Coulomb friction in fibers

Relying on the Alart and Curnier functional formulation
• A simple criterion for convergence

Based on the degree of constraining of the system

Source code
The source code for our solver is freely available on
http://www.inrialpes.fr/bipop/people/bertails/Papiers/nonsmoothNewtonSolverTOG2011.html
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Limitations
• Slow (or no) convergence for over-constrained systems
• Does not scale up well (tens to hundreds fibers vs. thousands fibers)

Future work
• Design a robust solver for thousands densely packed rods
• Carefully validate the (hair) collective behavior against real experiments
• Build a macroscopic model for fibrous media (nonsmooth laws)
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Recent advance

Follow-up

• An improved functional formulation for exact Coulomb friction
• A splitting algorithm dedicated to large hair problems
→ In practice, this modified solver works very well for complex scenarios
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