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 Multiple coiling of an elastic sheet in a tube
 By V. Romero1, T. A. Witten2 and E. Cerda1'*

 1 Departamento de F?sica, Universidad de Santiago de Chile, Avenida Ecuador
 3493, Casilla 307, Correo 2, Santiago-Chile

 2 James Franck Institude and Department of Physics,
 University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA

 A piece of paper coiled up in a tube hugs the wall in order to minimize its elastic energy.
 However, a moment's observation shows that the paper fails to make complete contact
 near its ends. Here, we show that the detached region in the inner part of the coil touches
 down the tube wall in an angle that is independent of the system size, thickness and
 stiffness of the surface. This angle is universal for any coiled sheet whose unstressed state
 is initially flat. Our results show how the shape and stress distribution for this detached
 region define the geometry and mechanical equilibrium for the rest of the sheet. In
 particular, we find scaling relations to describe the structure of the outer part of the coil,
 in contact with the tube wall, as a function of the number of times the sheet is coiled, N.

 Keywords: folding; coiling; packing; crumpling; elasticity

 1. Introduction

 A huge 50 m steel strip produced in a factory must be packed into a roll of 1 m
 diameter before it is sent to the market. The genetic code of a virus encrypted in
 a DNA molecule of approximately 102 um length is carefully packed into a tiny
 capsule of 50 nm width. To coil a surface or fibre is one of the simplest ways of
 packing that does not require lines of high curvature or point singularities, where
 strains are important and plastic deformation or fracture can spoil the system
 (Witten & Li 1993; Cerda et al. 1999; Boue et al. 2006; Witten 2007). Although

 we normally pack surfaces by coiling, the description of the shapes observed
 is technically difficult. The main problem is self-contact. Even if the surface is
 assumed elastic and partial differential equations describe its local deformation,
 two points far from each other can make contact and produce a non-local
 interaction of the whole system. The simplest way to study the phenomena of
 coiling is to put the surface inside a tube of radius R, as we show in figure 1. The
 surface is coiled into a roll of smaller diameter than the tube, introduced into the
 tube and then released inside. It will hug the wall of the tube in order to minimize
 its elastic energy and conform to the geometry of the frame.

 A crucial observation is made by looking at the innermost layer. It fails to
 make complete contact with the coil. The sheet detaches from a point, and then
 its end meets the envelope surface in a peculiar way (figure 1). The tangents to
 * Author for correspondence (ecerda@lauca.usach.cl).
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 Figure 1. Photograph of a coiled sheet for R/S=0.1SS. The length of the sheet is more than
 10 times the diameter and N=l.

 the inner end of the sheet and the tangent to the tube intersect at this touchdown
 point, and define an angle a. Later on, we will explain why this detachment is
 necessary for the equilibrium of the coil, but now we concentrate on its
 universality. Because the surface is bent and not stretched along its middle
 surface, the only material property that is necessary to describe the deformation
 is its bending stiffness, B. The thickness of the surface, ?, plays a pure geometrical
 role: the coil becomes thicker in proportion to the length of the confined sheet,
 2S. Here, however, we focus on the case where thickness is negligible, so that
 most of the sheet follows the contour of the tube wall and is packed into a coil of
 curvature 1/R. Thus, the mechanical properties of the detached region cannot
 depend on the total length of the sheet and its thickness. We conclude that a
 relation of the form a = a(B, R) is only dimensionally correct if this angle has
 a constant value or a = const. This value must be the same for any elastic
 material and system size. A similar analysis implies that the opening angle
 subtended by the detached region, /?, and the relative length of this segment to
 the radius of the tube, L/i?, are also universal constants.

 A similar phenomenon is observed in the outer part of the coil, where the
 outermost layer takes off at some point and touches down the wall. However, as
 the number of layers increases, more and more pressure is added to the tube, so
 that the angle subtended by the outer detached region, /?e, must decrease with
 the length of the sheet. If we define the number of times the sheet is coiled as
 N= [S/ttR] (here [ ] denotes the integer part), dimensional analysis shows that ?e
 must be a function of N.

 In the last years, two-dimensional packing of fibres and sheets has been studied
 for plastic (Donato et al. 2002, 2003) and elastic materials (Roman & Pocheau
 1999; Boue et al. 2006; Bou? 8? Katzav 2007). Crumpled plastic materials show
 a complex geometry consisting of folds or loops of different curvature in a
 distribution that needs a proper statistical analysis. The final shape of the fibre
 or sheet will greatly depend on the way the system is prepared. On the other

 Proc. R. Soc. A (2008)
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 hand, a confined elastic fibre or sheet will search for a configuration that
 minimizes its elastic energy. This self-organization leads to simple structures,
 such as the 'ying-yang'-like shape reported by Boue et al. (2006) when packing a
 sheet inside a rigid cylinder. As the same authors concluded, this shape is
 observed because a closed fibre is constrained inside a cylinder; however, a spiral
 of pitch t must be the optimal packing for a fibre with two extremities. Figure 1
 shows that this spiral shape, although simple, has some interesting features, such
 as the mentioned detached regions near the sheet ends. In the present paper, we
 show that these regions are necessary to obtain the torques that bend the sheet
 into a coil. In ?2, we start with the analysis of a sheet with a sufficient number of
 layers such that the outer detached region is small (?e~0). The deformation of
 the surface is studied in terms of the classical El?stica or Euler equation
 (Landau & Lifchitz 1997) with no friction between the layers or between the coil
 and the wall. Our analysis of this equation gives the universal angle a and the
 length L of the detached region. In the same section, we prove that the system of
 forces acting in the innermost layer completely determines the stress in the whole
 sheet. This leads to the determination of the average pressure over the tube wall,
 the contact forces between different layers and the cross-sectional force in each
 layer. In ?3, we study the Euler equation for early stages of confinement when the
 two ends of the sheet do not interact. Our solution shows how a symmetrical
 shape rests on two contact points with the tube wall, until a third contact point
 is necessary for equilibrium. Cohen & Mahadevan (2003) reported similar shapes
 for nanotubes inside water drops, although they stopped the analysis at this
 stage. When the radius is further decreased, the curvature at this new contact
 point matches the curvature of the tube and then a region of contact is
 developed. This region separates two detached regions that take on the universal
 properties described in ?2. Continuing reduction of the radius simply expands
 this contact region. In ?4, we study the case when both detached regions interact
 and then the universal shape is disrupted. One end of the sheet overlaps the other
 and presses the (now named) outer end against the wall. This end moves along
 the sheet until a new point of self-contact is observed. This point evolves into a
 region of contact when the curvatures of each side equalize. Again, this
 contacting region expands until one of its boundaries reaches the curvature of the
 tube wall. At this critical radius, the universal shape of the inner detached region
 is restored. In ?5, we study how this mechanism is replicated to describe the
 deformation for any number of layers, so that the function ?e(N) is obtained.
 Finally, we close with a discussion of our results.

 2. The geometry of the innermost layer

 (a) Equilibrium equations and geometry

 For planar deformations one of the principal curvatures of the sheet vanishes, so
 that its line of curvature is a straight line or generator. The other line of
 curvature lies in a plane, so that this line defines a two-dimensional curve. In
 Cartesian coordinates, the position vector describing the geometry of the curve
 can be written as r(s) = x(s)e1 + y(s)e2, as we show in figure 2. Here, s is the arc
 length of the curve starting from the take-off point, and e^ and e2 are two
 perpendicular unit vectors lying in the plane. The tangent to the curve is readily

 Proc. R. Soc. A (2008)
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 Figure 2. (a) Geometry of a sheet coiled in a cylindrical tube. The deformation can be described by
 using a two-dimensional system of coordinates with its origin at the centre of the tube. The angle <j> gives

 the position of the tangent with respect to the horizontal direction. The trihedrons {e^ e2, e3} and
 {n, ?, e3} are defined in the figure, (b) A coil made of mica with similar geometry as (a).

 obtained as t=9sr, and its normal as n=?Xe3, where e3=eiXe2 points along
 the generator. The curvature of the principal line is then k=? ndst (Struik
 1988). Now, we proceed to write the equations of force and torque equilibrium
 (Love 1944; Landau & Lifshitz 1997; Cerda & Mahadevan 2005),

 and
 d?F + K = 0

 dsM + t X F = 0, J
 (2.1)

 where K is the external force per unit of area applied over the surface; F is the
 force resultant on a cross section; and M is the torque resultant per unit of
 length. A constitutive relation is needed to solve the equations. The torques can
 be connected with the curvature by the Bernoulli-Euler theorem; torques are
 proportional to the local curvature. The precise relation for planar deformations
 is M=BKe3 (Love 1944; Landau & Lifshitz 1997). We introduce the angle 0 that
 the tangent to the curve makes with the vector e2. In terms of this angle, the
 tangent and the normal are t = ? sin <f>ex + cos <f>e2 and n? cos <f>e\ + sin (?>e2.
 This allows us to find the curvature as k = ? ndst= (p.

 We now turn to the determination of the shape of the innermost layer. The ex axis
 was made to cross the sheet at the position of the take-off point in figure 2. In this
 configuration, it is straightforward to obtain the force balance in equilibrium.

 We first note that the force F that the rest of the sheet at the left side of the
 take-off point applies to the detached segment must be horizontal. To the left
 side of the take-off point, the sheet follows the circular shape of the container and
 thus has constant curvature. Therefore, in this region 9SM=0 and the torque
 balance equation (2.1) yields ?X F=0. Thus, the force at the cross section has the
 direction of the tangent and can be written as F=?ft for s<0, or F=?fe2
 when approaching the take-off point from the left side, where the negative sign is
 due to the orientation chosen for the cross section that points in the same
 direction as the tangent t. Furthermore, the external force per unit width at
 touchdown, P, points to the centre of the tube since it is exerted by the frictionless
 wall. Then, P = ? P(cos ?ex + sin ?e2). Here we observe that the horizontal
 component of the force at the touchdown point is balanced by force F, but not

 Proc. R. Soc. A (2008)
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 its vertical component. Hence, a vertical point force is needed for equilibrium at
 the take-off point. This force, T, is also provided by the wall, so that it must have
 the normal direction to the wall at this point. It gives T= ? Te^ Thus, force
 balance dictates the following relations between forces:

 T = -Pcos? and f = Psin?. (2.2)
 Both relations show that balance is possible only if the angle ? is in the second
 quadrant, i.e. between ir/2 and 7T. To obtain the angle /?, we need to solve the
 equations of equilibrium for the sheet. The segment is free of external forces
 between the take-off point and the touchdown point, so that the cross-sectional
 force F must be a constant along the segment. Its value is obtained by direct
 integration of the first of the equations in (2.1) near the touchdown point. It yields
 F=P for 0<s<L. The second equation for torque balance gives the Euler
 equation,

 50+Pcos(0-0) =0. (2.3)
 This is the same equation for a pendulum with frequency co2 = P/B, hence it is solved

 in terms of elliptic functions. A first integration yields B<p ?2 ? P[sin(? ? 0)?
 sin a] = 0. This represents the sum of kinetic and potential energy for the case of a
 pendulum. Here, we have used the conditions that no torques are applied at the
 touchdown point, where the tangent is (j) = ? ? a, so that the sheet near this point has
 zero curvature and must be straight. There is another constraint. The torque
 resultant at the take-off point must be continuous across the contact point, so that
 0|0=o = 1/R (Mahadevan & Keller 1999; Cerda k Mahadevan 2005). We conclude
 that the force at the touchdown point can be written in terms of parameters related
 to the geometry of the detached segment PR2/B= l/[2(sin ? ? sin a)]. Moreover,
 the curvature as a function of the angle is now given by R(p = [sin(/? ? 0) ?sin o?]1'2/
 [sin ? ? sin a}1'2.
 A final requirement is that the touchdown and take-off point are located in the

 positions (x, y) = R(cos /?, sin ?) and (x, y) = i?(l, 0), respectively. This gives two
 conditions that allow the determination of the angles a and ?. The kinematic
 relation t=dsr yields x = ? sin 0, y = cos 0; hence, after a change of variables
 from the arc length to the tangent angle, we obtain the shape of the segment as

 f* sin0 n , f* , cos(/> x = - d(j)-^-!- + R and y =\ d0?^-. (2.4) JO 0 JO 0
 The evaluation of these relations at the angle c/) = ? ? a gives the required
 conditions. Combining both relations, we find that the opening angle and the
 take-off angle are related through the equation 2 sin a = sin ?. This defines the
 multivalued function ? = ?(a). A second equation gives the value of a after solving
 the transcendental relation

 r>-,sinz -1-"W,)1 i?) J a v sin z ? sin a v sin a
 A numerical evaluation of this relation yields the value of the take-off angle
 as a^0.421 (?24.1?) and the opening angle as 0^2.185 (?125.2?). Using the
 identity 2 sin a = sin ?, we obtain the touchdown force as PR2/B= 1 /sin /??
 1.224. Equation (2.2) gives, for the cross-sectional pressure, the simple expression

 Proc. R. Soc. A (2008)
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 2T[

 25? [
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 Figure 3. Measured touchdown angle for different materials and confining radii R, illustrating
 universality of a. Circles, amorphous metal ribbon of 0.002 cm thickness and 0.5 cm width;
 diamonds, mica strip of 0.02 cm thickness and 1 cm width. Upper error bound indicates the angle
 at the contact point and lower error bound is the angle extrapolated from the inner surface of the
 strip to the boundary. Thick horizontal line indicates the predicted universal value of a.

 fR2/B= 1 and, for the take-off force, TR2/B= -1/tan ? ~ 0.705. Moreover, the
 length of the segment is L= Jq d(/> l/</>, i.e. L/R = 2.089. The segment is a little
 longer than the diameter of the tube.

 To check experimentally the value of the angle a, we have coiled a strip of
 mica and an amorphous metal ribbon inside tubes of variable radius. Since
 friction opposes the relaxation of the sheet to the equilibrium state predicted in
 our analysis, the tube was vibrated to allow the edge to find its minimum-energy
 position. Photographs were taken with the camera centred on the take-off point,
 so that the measured angle is not affected by perspective effects.1 The mica and

 metal have thickness of ?=0.2 mm and 20 urn, respectively. Since the sheet is
 straight near the touchdown point, it is not difficult to define its tangent line and
 obtain the intersection with the tangent line to the tube. A difficulty is that the
 tangent line can be plotted at any position across the thickness of the sheet and
 the choice can change the angle by two or three degrees. Two parallel lines make
 different angles with the tangent to the tube since they intersect the circle
 at different positions. Our choice was to measure two angles, one by using the
 line along the inner surface of the sheet, and the other by using the outer surface.

 The line closer to the centre gives the larger angle. Using these two values, we
 defined the angle a as the mean value of the two and the error of our
 measurements by their difference.

 The strip was coiled into tubes of decreasing radius until it failed to return to
 the straight state upon removal from the tube. Figure 3 shows our experimental
 results for both materials. The angle is near the theoretical value predicted over a
 wide range of values of the ratio 2R/t, although a departure from the theory is
 observed for small diameters. We account for that change as a sign of plastic

 The angle can change by several degrees if the camera is centred on the centre of the tube owing
 to parallax error.

 Proc. R. Soc. A (2008)
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 behaviour in the system. The bending strain is y~t/R, so that the abscissa in
 figure 3 represents the inverse of this strain. The plastic limit was independently
 estimated by measuring the maximum value of the curvature such that the
 strip could not return to its initial state. For mica, we found the critical value
 yc = 0.025, which is consistent with the value 2i?/?~100, where the departure
 from the theoretical angle was found for that material. We note that there is no
 plastic deformation in the detached segment except near the take-off point, so
 that the resisting torque at that region is lower than for the elastic case. Hence,
 the segment is less compressed against the wall and the touchdown angle must be
 larger than the one predicted (figure 3).

 (b) Forces in the coiled surface

 At the region of contact near the take-off point, the curvature of the sheet
 has the curvature of the tube 1/R. Obviously, this is an approximation that
 assumes the sheet has zero thickness. Curvature should be slightly larger in
 proportion to the number of layers and thickness of the sheet. We also assume that
 there are sufficient numbers of loops to keep the outermost layer in close contact
 with the tube, so that ?e = 0. Since 9SM=0, the torque balance equation yields
 ?XjF=0, hence the force at the cross section has the direction of the tangent and
 can be written as F= ?ft. Besides, the external force applied by the wall or the
 other layers must point along the normal, so that K= ? kn. This external force is
 connected with the cross-sectional force by the first of the equations in (2.1). This
 connection is possible only if/and k are constants that satisfy the equation

 *=4- (2,6)
 The value of /is fixed by continuity. Its value is fR2/B = 1 at the take-off point

 and must have the same value at every point of the coil. The net external force per
 unit of length over a given layer is then k = f/R= B/R^. This is the sum of the
 normal forces applied by the inner and outer layers (or wall) in contact with it.
 Summing up all these contributions, we obtain that a coil of N layers pushes the
 wall with a pressure p given by

 P = N^. (2.7)
 This result can be obtained in a more general framework by using the mean
 pressure defined in the work of Boue et al. (2006). The bending energy per unit of
 width of a small segment As of the sheet in close contact with the frame is
 proportional to (B/2)ks/R2. Neglecting the structure of the inner and outer layer,
 we conclude that the total elastic energy per unit of line must be
 UB = (B/2)2S/R2 (Landau & Lifshitz 1997). The total area of the container is
 A = 7tR2, hence the energy can be written in terms of this area as f/B = tcBS/A.
 The average mechanical pressure over the wall is obtained from p = ? (9?7B/9?)S.
 It again yields the result (2.7) after we replace Nby S/ttR. We will discuss more
 about the validity of connecting formula (2.7) with the average pressure in ?5.

 Our assumption that the curvature is constant and equal to 1/R is not true
 when the outer end of the sheet separates from the coil and lifts all the other
 layers. In this case, we can show that our result (2.7) stands valid for the regions

 Proc. R. Soc. A (2008)
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 Figure 4. Schematic end views of a sheet of arc length 2S. (a) The sheet touches the circle at the
 two ends when R/S=l. (b) Here, the radius is R/S= 0.932 and (?)0 = 7t/3. (c) R/S=0.741 and
 (po = 7r/6. (d) The midpoint first contacts the circle when R/S=e1, where ei is defined in the text.
 This new contact point is at the angle 0 = 7r/2.

 in contact with the tube. To see that, we study the equations of equilibrium in
 intrinsic coordinates F = ftt + fnn. The torque balance gives fn= B(j> and the
 force balance in the tangential direction is ft + <fifn = 0, since there are no
 frictional contact forces. Combining both equations, we obtain the relation
 ft + B<j)(?) = 0. An integration yields

 /t=-f (?2-??)+/i, (2-8)
 where <pi and f\ are integration constants. Assuming that the innermost layer does
 not interact with the outer detached region because they are in different angular
 sectors (figure 2), we fix the constants by using the curvature and force at the take
 off point. We obtain <j>i = 1/R and f\=f. Therefore, any layer with the same
 curvature will have the same cross-sectional force. In particular, if all the layers in a
 given section of the coil have approximately the curvature of the tube wall, we
 conclude that ft=fand formula (2.7) remains valid at those locations.

 3. Early stages of coiling

 We now study the series of events that lead to the coiling of the sheet inside the
 tube as the radius R decreases from a large value. The minimal length needed for
 the sheet to exert force on the tube is the diameter 2R. At this condition, we put
 the sheet along the direction e\ for the axes defined in figure 4a. If the tube
 diameter is a bit smaller than the sheet length, the sheet starts to bend to one of
 the two sides of the tube as we observe in figure 4b. Note that both contact points

 must remain on the diameter line because this is the only way the external point
 forces Qq and Qi can add to zero.

 The force Q0 is normal to the contact point at the lower part of the strip and
 can be written as Qo = ? (Zoei> where q0 is the magnitude of the force. It is
 straightforward to see that the equation for the curvature is Bcj) ? q0 cos <p = 0.
 A first integration of this relation gives, for the curvature,

 <j> = (2g0/JB)1/2(sin 0 -sin <?0)1/2, (3.1)

 where 0O is the touchdown angle at the lower point. This angle is not the
 universal angle a of ?2. It decreases as the radius is reduced. Owing to the
 symmetry, we solve the equation between the angles (?)0<<fi<7r/2, where </> = 7r/2

 Proc. R. Soc. A (2008)
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 is the point of maximum curvature along the sheet. That point moves along the
 line x=0, so that the total projected length along the vertical axis from the
 touchdown point to the point of maximum curvature is R. Evidently, the length
 of the strip between these two points is S. These two constraints give the value of
 the unknown parameters g0 and 0o- We obtain

 n/2 sin 0 , ? r/2, . 1 PIT

 R = d0 ""^y and S
 J</>o 0

 d0T. (3.2) 0

 Substituting the value of the curvature from equation (3.1), we eliminate the
 parameter q0 in favour of the angle 0O. It yields

 R/S = ^ , , sin 0 d0
 y'sin 0 ? sin 0O

 7T/2 !

 d0 y. , . .=, (3.3) </>0 vsm 0 ? sin 0o

 which defines the function cj)0 = (?)0(R/S). This function can be replaced in the
 first equation in (3.2) to obtain the parameter q0. It gives

 R\/B = \  "2 ?4, *> ) . (3.4) MR/s) ^smcp-sm^R/S))!

 We note that the force R2qQ/B decreases as the radius is further decreased
 (figure 76), so that the sheet is more easily bent by the tube. The average
 pressure is the sum of the magnitude of the normal forces divided by the
 perimeter. In this case, we obtain p= 2q^/(2^R). This definition is equivalent to
 the expression p= (9A/7B)S used in ?26. We note that the force R2q0/B and the
 average pressure decrease as the radius is further decreased (figures 7b and 12),
 so that the sheet is more easily bent by the tube. In addition, the curvature of the

 midpoint decreases when R/S is reduced until the condition R/S= ex = 0.659.
 Here, the point at <p = 7r/2 makes contact with the frame (figure Ad). The angle 0O
 decreases from the value 0o = /7r/2, where the sheet is straight, to the value
 0O~O.358 (?20.5?).

 We can see from figure 4d that our solution remains valid until the sheet touches
 the tube in the position (x, y) = (0, R). At R/S= i, there are three external point
 forces over the surface such that Q0 + Qi + Q2 = 0 (figure 56). Here, we name the
 point forces, tangent angles, arc length positions and points where they are located
 in anticlockwise order. The first point 0 is located at s=0, the tangent angle at this
 point is 0o and the point force is Q0; the second point 1 is located at s=Si, its
 tangent is 0i and the point force is Q1? etc., as we move along the sheet from
 the starting point at s=0. Owing to the rotational invariance of the system, we can
 fix point 0 in the vertical axis. Further decreases of the radius move point 2 out of
 the diametral line since the horizontal components offeree Q\ and Q2 must cancel.

 The curvature is again given by 50 ?2 = g0(sin 0 ? sin 0O), but we need to apply
 different boundary conditions. The contact point at 5=5 is located at
 (x, y) = R(cos 0!,sin 0t). That requirement gives the necessary conditions to
 find the parameters {0O, 0i}. An integration of equation (2.4) applied to this

 Proc. R. Soc. A (2008)
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 (a)  (d)

 Figure 5. Sketch of the strip for e2 < R/S < X. There are three point forces applied on the sheet at
 s=0, S and 2S. (a) R/S= x and (6) R/S=0.6. The upper end of the sheet moves to the left side of
 the line y=0 to balance the horizontal force at the midpoint, (c) R/S=0.55 and (d) R/S=e2, where
 the curvature at the midpoint matches the curvature of the tube.

 geometry gives, for the coordinates,
 1

 x/R=  d(/>
 sin </>

 (2R2q0/B)1/2 J*, Vsin^-sin^o
 + 1

 and

 y/R = -
 1

 -2-y/sin^ ? sin^o
 (2i?V?)1/2

 We evaluate the second relation at the new contact point to obtain the force
 g0 as a function of the unknown angles 0O and fa. It gives R2q0/B =
 2(sin fa ? sin 0o)/sin201. These two angles are found by using the conditions
 that the x position and length of the sheet at the angle 0 = 0i follow the relations

 sin^i f*i sin0 1-COS0! = . ===== d0 . ======
 2vsin 0! ? 0o J0o v sin 0 ? sin 0O

 and

 S/R =
 2y/sUX

 sin fa j^i
 3?n 0! - 0o J0o

 d0
 v/sin 0 ? sin 0O

 Figure 5 shows the numerical solution of these equations for some values of the
 parameter R/S. In contrast with the first case, the curvature at the midpoint
 decreases and the angle 0O increases as the radius is further decreased.

 Our solution is valid while the curvature of the midpoint is larger than the
 curvature of the tube. When they become equal, a region of contact is developed
 between the sheet and the wall. This region separates two similar detached regions
 that obey exactly the same boundary conditions that we used to obtain the
 universal shape in ?2. Therefore, the sheet geometry is represented by two segments
 with universal shape connected by an angular region 0 (figure 6b) in contact with
 the tube. We readily obtain the values 0O = a, fa = ? and qo = P that we found in ?2.
 There are a pair of point forces in each detached region and a distribution of forces
 at the contact region, as figure 6b shows. As the radius of the sheet decreases, the
 detached segments keep their shape and the region of contact expands. This
 solution is valid until point 3 meets point 0 in (x, j/) = (i2, 0), as is shown in
 figure 6d. Since the detached segment spans an angle /?, we conclude that the
 solution remains valid until the angular sector 0 equals the angle (27T?2?). It yields
 a value R/S=es = 0.328. Finally, figure 7 summarizes the behaviour of the
 quantities {0O, fa, #o> #1} f?r the events described in this section.

 Proc. R. Soc. A (2008)
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 Figure 6. Sketch of the sheet for e3 < R/S < e2. (a) R/S=e2, where the curvature at the midpoint is
 1/R. The detached region has a shape as shown in figure 2. (6) The contact point at s=S
 transforms into a region of contact that spans an angle (p. Here, <p = 7r/4, (c) <p = 7r/4 and (d) cp =
 7r/2. The two ends of the strip make contact at the line y=0. The total angle of contact with the
 tube is <p = 1.9 (?109?) and R/S=es.

 (a)

 0.4 0.5 0.6 0.7 0.8 0.9

 Figure 7. (a) The touchdown and take-off angles as the radius of the tube is reduced from R/S=l
 to R/S=e3. (6) The dimensionless touchdown and take-off point forces.

 4. Self-contact

 For 5/7?<e3, the endpoint at s=25 touches the end at s=0. There are five point
 forces along the sheet, as figure 8b shows. These forces point perpendicular to the
 surface of contact, i.e.

 Qo = -9bei, Qi = ft"(0i), <?2 = -fcn(02), Q3 = -03"(03) and Qa = ~Qi

 Force balance requires that the total cross-sectional forces at points 2 and 3 must
 be tangential just above s2 (F2) and just below s3 (F3). Using the first of the
 equations in (2.1), we find the constraints

 F2 = -f2t((l>2)=-Qo-Qi-Q2
 and

 ^3 = -hKfa) - Q3 + Qa
 The last two vectorial equations allow us to find the parameters {q0, qi, q2, #3} in
 terms of two parameters {/2, fs}. We now obtain the equations for each segment
 of the sheet. The cross-sectional force for 0<s<s1 is F= ? Q0 and the tangent
 angle follows the equation Bip ? g0 cos 0 = 0. The next segment at s\ < s< s2 has a
 cross-sectional force F= ? Q0?Q1 and its deflexion is given by the equation
 50 ? q0 cos 0 + qi cos(0 ? 0i) = 0. Finally, the cross-sectional force for s3 < s< 25
 is F= ? Qi, and this segment follows the equation 50 + q1 cos(0 ? 0X) = 0.

 Proc. R. Soc. A (2008)
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 (a)  (b) \ \LK,  (d)

 Figure 8. Sketch of the sheet for e5<R/S<e4. (a) R/S=e4, (b) R/S=0.316, (c) R/S=0.276 and
 (d) R/S=e5.

 The shape of each segment is found by solving the equations for the curvature
 and the coordinates. If we define k = fa the equation for the curvature can be
 written as k = W(0), where W(fa) is a different function for each segment. Hence,
 an ordinary differential equation (ODE) system of four equations,

 -sin 0, y = cos 0, 0 = k and k ? W(0),  (4.1)

 gives the shape of the segment. The flow defined by this ODE connects the
 coordinates {x, y, 0, k] at both ends for each segment, so that four constraints
 are obtained by solving the system. Since there are three different segments, a
 total of 12 conditions are obtained. On the other hand, we can completely define
 the coordinates of the endpoint of each segment by using the parameters
 {00,01,02,03,04,^1,2/1^1}- For instance, the coordinates of point 4 along the
 segment s3<?9<2S are {^i, ?/i, 04, 0} and the coordinates of point 1 are
 {xii 2/i? 0i? Ki}- This set of unknowns must be added to the set of parameters
 {/2, A, Si, s2} that are needed to solve the equations. Here, we do not include the
 arc length at point 3 since the sheet follows the wall between points 2 and 3 and
 then ss = s2 + i?(03 = fa). Thus, for a given value of the radius R and length 25,
 our unknowns are {0O, fa, 02,03,04, #i, j/1? K\,f2,fs: Si, s2}, a total of 12, and the
 problem is well posed.

 A solution is obtained by solving numerically equation (4.1) and applying the
 constraints defined above. Our solution satisfies the compatibility condition
 f2=h, so that this shows that both detached segments can be connected through
 a segment in full contact with the wall. There is no solution of this kind for
 e4<R/S<e3, where e4 = 0.323. This can be explained by the fact that the solution
 for e3<e cannot be continuously connected with the solution for e<e^. Force Q4
 is perpendicular to the segment between points 0 and 1 in figure 86, but the
 equivalent force has a radial direction in figure 6d. Hence, somehow the force Q4
 must rotate between the values e3 and e4. To explain this rotation, we need to
 include the thickness of the sheet in the analysis, so that our approach is no
 longer valid in this case.

 Figure 8d shows the sheet shape for R/S= e5 = 0.263. At this condition, a new
 contact is made between both detached segments. This contact adds a pair of
 point forces, so that there are now seven point forces, as figure 96 shows. We can
 use similar numerical analysis to obtain the shape of the sheet, although the
 technical difficulties increase. It is necessary to solve the equations for five
 different segments to obtain the unknown parameters. This solution is valid until

 Proc. R. Soc. A (2008)
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 (a)  (b) v \ ?K  (d) \ \ IK (e)

 Figure 9. Sketch of the coiled sheet for (a) R/S=e5, (b) R/S=0.255, (c) R/S=e6, (d) R/S=0.240
 and (e) R/S=e7.

 (*> \ 1 Ik

 Figure 10. Sketch of the coiled sheet for (a) R/S=e7, (b) R/S= 0.210, (c) ?/S^eg and (d) R/S=e9.

 point 6 meets point 3 and presses directly against the wall. At this configuration
 R/S= e6 = 0.250, the length of the sheet is eight times the diameter. The
 corresponding sheet shape is shown in figure 9 c.

 For e < e6, the end of the inner detached segment rests over the part of the coil
 in contact with the tube wall. There are now six point forces over the sheet and a
 total of four segments. Further decreases of the radius make point 5 move along
 the wall and the curvature in point 4 decrease. The behaviour of the sheet at
 point 4 is very similar to the one observed for point 1 in figure 5. At the value
 R/S= e7 = 0.224, the curvature at point 4 matches the curvature of point 1, so
 that a region of contact starts to develop for e < e7.

 Figure 106 shows the forces for e<e7. The region of contact between the inner
 and outer detached segments spans the arc length from point 1 to point 2 (or
 from point 5 to point 6). It is noteworthy that the Euler equation is still valid in
 this region. This is explained by using the equations in (2.1). The balance of
 forces for each segment along the contact region is

 dsF[ + K = 0 ?
 and > (4.2)

 9sFe-?: = 0, J
 where jP1 and Fe are the cross-sectional forces for the inner and outer segment in
 contact, respectively. The external force is only due to the interaction between
 both segments; therefore, the total cross-sectional force F= F1 + Fe for the
 joined sheet follows the equation F= Fxe>\ + F2e2 = cte. Moreover, the torque
 balance for each segment in the contact region is

 dsM[ + tiXFi =0 1
 and > (4.3)

 8,Me + ieXFe =0.

 Proc. R. Soc. A (2008)
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 Figure 11. Photographs for a coil made of mica for different values of the parameter R/ S. (a) R/S=0.28,
 (b) R/S=0.26~e5, (c) R/S= 0.22~e7 and (d) R/S=0.20~e8.

 Both segments have the same tangent, hence t= t1 = te and Ml = Me. Adding
 equations (4.3) and using the Bernoulli-Euler theory, we conclude that the
 tangent angle satisfies the equation

 250 - F2 sin 0 - F1 cos 0 = 0, (4.4)
 along the contact region. This is the Euler equation for a sheet with twice the
 rigidity of the original one. Thus, we need to solve again the same system of
 equations in (4.1) for each segment of the sheet. A numerical solution shows how
 the contact region expands as the radius is reduced. At R/S= e8 = 0.203, point 6
 meets point 3, thence point 6 is in direct contact with the tube wall and must
 have the curvature 1/R. The inner detached segment satisfies, at points 6 and 7,
 the same boundary conditions that we used to obtain the universal shape in ?2.
 The take-off point at point 6 is in an angle ?86.8? from the vertical line, so that a
 clockwise rotation of figure 10c in the same amount reproduces figure 1.

 As the radius is further decreased, the inner detached segment moves along
 the tube, while the structure for the outer detached region remains intact. Both
 segments do not interact until point 7 in figure 10& meets point 4. This happens
 for R/S = e9 = 0.172 figure lOd. It is interesting to observe that the part of the
 tube wall not in contact with the sheet spans an angle of ?e~ 134?. This is more
 than one-third of the total perimeter and larger than the opening angle ?. The
 angle ?e diminishes as the number of layers increases, as we will study in ?5.
 We have experimentally checked the configurations predicted by our numerical

 solutions. Figure 11 shows different shapes for a mica sheet as the radius of the tube
 decreases. Friction was minimized by shaking the tube before each photograph was
 taken. The observed shapes are consistent with figures 4-10. Additionally, the
 transitions can be followed by using the average pressure as the order parameter.
 Figure 12 shows the value of the pressure for eQ < R/S< 1. It is an irregular function
 of the radius size. The fluctuations are obviously related to the different events
 observed in the coiling process.

 5. A sheet with N layers

 For R/S< 9, the inner detached segment starts to press the part of the coil that is
 not in contact with the tube wall. This makes the angle ?e smaller. At some critical
 radius, a point along the inner segment touches the coil in a similar way to that
 shown in figure 8d. The curvature of the innermost layer at this new contact point is
 larger than the curvature of the underlying layer. However, this curvature decreases
 as the radius is further decreased. At a critical value of the radius, both curvatures
 match, and a region of contact is produced. This region of contact now has three

 Proc. R. Soc. A (2008)
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 e V6e \ e9 , e7, 5 , e3

 iV=l  iV=0

 Figure 12. The dimensionless average pressure R3p/B as a function of the radius size for
 9 < R/S < 1. The discontinuity for 64 < R/S < e3 is explained in the text.

 iV+1 layers
 iVlayers

 Figure 13. The outer detached region for JV=3.

 layers. Finally, this region expands and one of its boundaries reaches the curvature
 of the tube wall. At this condition, the detached region in the innermost layer
 restores the universal shape that we reported in ?2. The sheet shape looks similar to
 figure 10 d, although the coil now has N=2.

 We can study the configuration observed in figure lOd for N layers. Figure 13
 shows the part of the coil not in contact with the tube wall. The segment between
 points 0 and 1 has one layer and prevents the coil making contact with the tube
 wall. It joins the coil at point 1, so that the coil has N+1 layers between points 1
 and 2. At point 2, the N+1 layers make contact with the tube wall, so that their
 curvature is 1/R. At some distance from point 2, emerges the inner detached
 segment (not shown in figure 13) with the universal shape described in ?2. This
 implies that the coil has N layers at point 3.

 Five point forces are needed to understand the detachment of the coil from the
 wall. They are
 Qo = -ftex, Qi = 2in(0i), Q2 =-q2n(fa), Q3 =-q3n(fa) and Q4 = -Qx.

 Proc. R. Soc. A (2008)

This content downloaded from 134.157.34.213 on Fri, 31 Jan 2020 22:30:50 UTC
All use subject to https://about.jstor.org/terms



 2862  V. Romero et al.

 The rest of the coil applies a cross-sectional force F3 = N(B/R2)t((p3) at point 3
 and F2 = (NJrl)(B/R2)t(fa) at point 2 (figure 13). Here, we use the results
 obtained in ?26: each layer with curvature 1/R has the same cross-sectional force
 f=B/R provided by the inner detached segment. Force balance dictates the
 equilibrium condition,

 F2-F3 + Q2 + Q3 + Q0=0. (5.1)
 Equation (2.8) connects point 0 with point 2 and gives the magnitude offeree Q0
 as % = 1/2 sin 0O. Here, % = R2q0/B is the dimensionless form offeree q0. This
 identity and equation (5.1) give the magnitudes offerees Q2 and Q3 as a function
 of the angles {0O, 02, 03}. We obtain

 <?2 = ZT~n-7T KN + 1)cos(03 -fa)-N- sin 03/2 sin 0O] sin(03-02)
 and

 ?3 =
 1

 [N cos(03 - 02) - (N + l)+ sin 03/2 sin 0O], sin(03 - 02)
 where q2 and q3 are the dimensionless form offerees q2 and q3) respectively. Using
 equation (2.1), we can obtain the cross-sectional force along the segment between
 points 0 and 1 as F= ? Q0. Similar analysis shows that the cross-sectional forces
 along the segment defined by points 1 and 2, and 3 and 4 are F=F2+ Q2 and
 F3? Q3, respectively. These relations allow us to obtain the Euler equation
 for each segment. The Euler equation for the segment between points 0 and 1

 is R2(j) ? % cos0 = 0. A first integration gives the curvature as R<j)= (2%)1'2
 (sin 0 ? sin 0o ) , where we have used the condition that the curvature is zero at
 point 0. We can obtain the shape of the sheet by using equation (4.1). The
 coordinates of the segment between points 0 and 1 are given by

 sin0
 Xoi/R = -  d0

 and

 Voi/R  d0

 (2go)1/2(sin0-sin0o)1/2

 COS0

 + 1

 (2go)1/2(sin0

 (5.2)

 -sin 0o)1/2'

 where we have used the boundary conditions (x(0o), y((/>o)) = (i2,0). The Euler
 equation for the next segment is (N + 1)R2(/) + q2 cos(0 ? fa) + (N + 1) sin(0 ? fa)
 = 0. A first integration with the boundary condition 0(02) = l/i? gives, for the
 curvature, R(p = [2 cos(0 ? fa) ? 1 ? 2q2 sin(0 ? fa)/(N + l)]1 . Using point 2 as
 the starting point, we obtain the coordinates of this segment as

 sin0
 xl2/R =

 and

 Vi2/R = -\ h

 d0
 [2cos(0-02)-l-2g2sin(0-02)/(# + i;  il/2

 d0  COS0
 [2cos(0-02)-l-2g2sin(0-02)/(iV + l)]

 + COS 02

 sin 02

 } (5.3)

 1/2

 Finally, we study the segment between points 3 and 4. The Euler equation is
 NR2(f) ?q3cos(0 ? 03) + Nsm((j) ? 03) = 0 and the curvature is i?0 = [2cos(0 ? 03)

 Proc. R. Soc. A (2008)
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 ? l + 2?3sin(0 ? 03)/iV]1/2, where we have used the condition 0(03) = l/i?. The
 coordinates starting from point 3 are

 sin0
 ^34 /R:

 and

 yu/R = -

 d<t>

 d<t>

 [2cos(0 -<j>3) -1 -2?3 sin(</> -03)/JV]1/2

 COS</>

 + COS </>3

 -fsin(/>3.

 (5.4)

 J03 [2cos(0-03)-l-2?3sin(0-03)/Af/2
 The coordinates along these three segments must coincide at point 1, so that we
 have the identities

 ^oi(0i) = ^i2(0i) = ^34(01 + 2tt) and yOi(0i) = ?/i2(0i) = 2/34(01 + 270

 These four relations completely define the values of the four unknown parameters
 {0o, 0i, 02, 03}. These equations can be solved numerically to obtain the
 parameters and the subtended angle ?e = (27r ? 03) + 02. We find that this angle
 follows the scaling ?e~N~1/3. We also obtain ?e ~02 ~27r- 03 ~ N~1/3 and
 01 ~0o ~N~~2^. A more precise analysis can be made by using these results
 to expand equations (5.2)-(5.4) at point 1. We write N=r?N, ?e = r]1'3?e,
 00 = 712 005 e^c-? where rf is an expansion parameter. In powers of r?, it yields,
 for the first two orders,

 %(0l)/A= 1 -!(</>! +20o)(0r -0o)1/2r74/3

 and

 2/oi(0i)/#:  2 [0o (0i  ^o)]1/2r/2/3  [M<Pi-<Po)r {Wo+Mi+tiW

 ^12  ,4/3

 and

 ^2(0i)/? = 0iV/d4 ,2/3,

 2^'3</)2
 a;34(01+2?r)/A = H

 and

 2/34(0! + 2^/72 = 0xr72/3 +

 3^3 + J\tyo0? (V2, + 4</>2<?>'3 + 3^1) x
 12N<p0(<p2 + <t>'3) V '

 iV^o(03 + </>2) (l20? + 2^l02 + </?l)

 (5.5)

 (5.6)

 ,4/3

 24#(/?0((/?/3 + (/?2)

 /2/ ,a
 3<^302 + iV0o^'3 ( <\>% + H'z<t>2 + 3</>2'

 l2N<?>Q{<l>'z + <t>2)

 (5.7)

 Here, 03 = 27r?03 is the angle of point 3 taken from the vertical direction.
 Comparing equations (5.6) and (5.7), we conclude that 02 = 03, so that both sets of
 equations are now equivalent. The y coordinates in equations (5.5) and (5.6) are
 equal at the first order if 0i = 20o. We now observe that there is not a term of the
 order of r? in equations (5.5) for the y coordinate, so that this term must be zero in
 equations (5.6). It yields the condition 8?V0O02?3 = 0. Finally, we compare the

 Proc. R. Soc. A (2008)
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 oq

 c?

 Figure 14. Dotted lines show the numerical results for ?e (in deg.) and the dimensionless force R2q0/B.
 The solid lines give the asymptotic approximations (2\/3)/(21/3)i\r1/3 and (222/3)/(v/3)^2/3 for the
 angle ?e and the force, respectively.

 second order for the x coordinate of equations (5.5) with the equivalent expression
 in equations (5.6). They must be equal. This gives the condition 16?V0JJ +
 02?3^0001 = 0. We solve the last two relations to find fa = ^3 ? ?e/^~
 (\/3/21/3)iV~1/3 and 0o = 0i/2= ((v/3)/(422/3))AT~2/3. Figure 14 shows a
 comparison of our analytical results with the numerics. It can be observed that
 our asymptotic analysis works, even for a small number of layers. In fact, we obtain,
 for 7V= 1, an angle ?e~ 158? that is 25? off the exact value obtained in ?4.

 The origin of the scaling for ?e can be partially understood by considering
 the force equilibrium of the coil. Force Q0 must balance the pressure applied
 by the tube wall along the sheet between points 2 and 3. This pressure p is of the
 order of ~NB/R3, as we found in ?26. Since the pressure applied in the
 upper part of the coil is not balanced in a sector of length ~ R?e in the lower
 part of the coil, it gives a net downward force ~?eNB/R2. Force balance yields
 q?~ ?eNB/R2. Using the identity i?2?0/5= 1/2 sin0o ~ l/0o, we obtain the
 condition 1 ~ Nfa?e. This relation is satisfied by the scaling we found above.

 Our scaling relations show that the point forces at the contact with the wall
 g0, fe and q3 increase as ~N2'3. In this limit, the contribution to the average
 pressure p of these point forces is negligible compared with the pressure made by
 the coil between points 2 and 3. In addition, when the number of layers
 increases, the region of contact expands to almost the full perimeter. Thus, for
 sufficient number of layers, the main contribution to the average mechanical
 pressure comes from the local pressure defined in (2.7), and then both quantities
 must coincide.

 It is clear that our analysis for the outer detached region will be valid until the
 thickness plays a role in the configuration depicted in figure 13. Point 0 can interact
 with the layer above if the thickness is of the order of the distance between them.

 Proc. R. Soc. A (2008)
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 An estimation of this distance is given by the condition R ? ?oi(0i) ~ t or, by using

 (5.5), (1/(421/3AT4/3)) - t/R. Thus, the number of layers must be smaller than
 (l/223/4)(JR/i)3/4. For the largest value of R/t in figure 3, this gives N~50. This
 number should be sufficient to observe the proposed scaling.

 6. Conclusions

 We have studied the simplest configuration to confine an elastic sheet inside a
 cylinder. To minimize the bending energy, the sheet decreases its curvature
 by staying close to the wall. This makes a spiral of pitch t and increasing curvature
 in proportion to the number of times the sheet is coiled. Our results show how the
 extremities of the spiral, which have to be straight and detached from the coil since
 there are not applied moments at the ends, provide the necessary torques to bend
 the sheet. To study the shape of the sheet at its extremities, we assume that
 thickness is negligible, although it is possible to see how our results will change

 when thickness is included in the analysis. The effective radius Re$ of the inner part
 of the coil is roughly Reff~R ? tN= R(l ? p/2), where p is the packing ratio
 p = 2St/irR2 (Donato et al. 2003). Thus, all our results in ?2a for the inner detached
 segment can be corrected replacing R by this effective radius. Accordingly, this will
 change the size of the inner detached segment, but not its shape. Therefore, the
 angles defined for the inner detached segment will not change with the packing
 ratio. Our analysis for the coil and outer detached segment, however, are valid only
 when AT<? (l/223/4)(i?/i)3/4 or pN1'3 <<C 1.

 The simplicity of our arguments suggests that a detached region can be found in
 other geometries. A fibre forced to coil inside a tube will be unstable if it is allowed
 to deform out of plane. In that case, bending energy is minimized by a helical shape,
 so that the whole fibre is in contact with the wall except for two segments at
 the extremities. Once again, these detached segments are required to obtain the
 torques that bend the fibre into a helical shape. Our analysis can also be applied to
 three-dimensional deformations of sheets. The Euler equation accounts not only for
 arbitrary planar deformations of rods, but also conical deformations of surfaces
 (Cerda 8? Mahadevan 2005; Boue et al. 2006). It is straightforward to see that a
 complete analogy can be formulated between the results of this paper, which
 focuses on planar deformations, and similar phenomena that are observed for
 conical shapes. For instance, a sheet can be coiled into a conical shape, as anyone
 who has ever rolled a paper to make a blowgun dart knows. In addition, looking
 along the cone axis, the inner end of the sheet detaches from the coil and again
 shows the configuration observed in figure 1.

 We thank Juliano Denardin for providing the metal strip used in the experiments, and Sidney
 Nagel and Aaron Dinner for useful comments. We also thank the Chicago-Chile Materials
 Collaboration supported by the National Science Foundation under Award DMR-0303072. E.C.
 and V.R. acknowledge the support of Anillo N? ACT 15, FONDAP grant no. 11980002 and
 FONDECYT grant no. 1050083.
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