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Spiral tearing of thin films†‡

Victor Romero,*ab Benôıt Roman,b Eugenio Hamma and Enrique Cerdaa

Controlling the fracture propagation in a film is an important element in the design of better packaging

seals that must resist handling and yet provide a tearing mechanism for easy opening. Here we show

that under simple initial setup conditions a divergent tear can be obtained that follows the path of a

logarithmic spiral over two decades in length scale. We study the general rules leading to the “spiral

growth” of a tear and connect its geometry to the specific material properties of the film.
1 Introduction

Nineteenth century scientists were fascinated by the spiral
growth observed in seashells, snails, or the horns of animals.1,2

It is a clever growth mechanism that preserves the shape by the
simple addition of a new material in successive self-similar
steps. The classic book of D'Arcy Thompson “On Growth and
Form”2 beautifully explains that this self-similar or “gno-
monic” growth is always outlined by a logarithmic spiral.
Spiral shapes are not unknown in fracture mechanics.
Shrinkage of a sol–gel layer producing a stress eld that cracks
the lm in a complex 3D conical spiral has been reported in
the literature.3,4 The drying of thin layers of precipitates shows
millimeter size spiral paths that move inwardly by propagation
of a desiccation front.5,6 However, spiral shapes obtained by
tearing are unexpected since fracture trajectories usually
converge to minimize the energy concentration generated, for
instance, when pulling a ap from a lm.7–11 Thus, convergent
tears are a natural outcome when trying to open a sealed
package. In contrast, special conditions are needed to observe
divergent growth of a tear. Some recent examples of divergent
propagation are the tearing produced by pushing a conical
tool12 through a thin aluminum foil, the peeling of coated
cylindrical surfaces,13 and the concertina tearing produced by a
blunt object that is forced along a thin elasto-plastic
sheet.8,9,14,31

Here we report two mechanisms for tearing both leading to a
very robust and reproducible divergent path, in brittle mate-
rials, commonly used for packaging. We rst study fracture
propagation obtained by pushing with a blunt object, and,
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second by pulling on a ap. The loadings are very different, but
in both cases the crack trajectories asymptotically approximate
a logarithmic spiral15 r¼ r0e

qcot f (in polar coordinates r, q), with
a pole located in a position that depends on the “seed”made to
initiate the fracture, and characterized by a constant spiral
angle f that is weakly dependent on the material properties of
the lm. We rst show experimental results of spiral crack paths
obtained by pushing. We then present a theoretical model and
implement a numerical algorithm allowing us to compare
theory to experiments. We then turn to the spiral obtained by
pulling and perform a similar analysis.

2 Experimental “pushing spiral”

To experimentally study the formation of a spiraling crack, we
take a brittle thin sheet (bi-oriented polypropylene, thickness t
from 30 to 90 mm), clamped at its edges on a frame (77 � 100
cm2), and make a small (5 mm) straight incision AB far from
the boundaries (see Fig. 1). A blunt object – the “tool” – is placed
inside the incision, perpendicular to the sheet. Then we start
manually moving the tool horizontally against one of the two
lips that dene the incision. At a certain load, a crack T even-
tually starts to propagate fromB if the pushing point is closer to
B than A . We then keep moving the tool always pushing on the
same lip of the sheet. We observe that the crack T describes a
curved path that progressively develops into a spiral shape that
reaches up to a meter in diameter in about 2.5 turns of the lip
[see ESI† where a movie of the process is presented].

During the rst 3p/2 degrees of rotation, we need to care-
fully push the lip in the part closer to the crack to prevent
starting a fracture at the other edge of the lip (corner points B
or A , which are subject to stress concentration). But this
precaution is no longer necessary for the subsequent propa-
gation of the crack, as we will show below. The remarkable
reproducibility of the crack trajectories obtained from this
method is shown in Fig. 2 where strikingly similar spirals are
obtained from two different trajectories of the pushing object.
We also checked that the crack paths are independent of the
size and shape of the frame.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Illustration of spiral crack propagation by a pushing tool. (a) Initial
configuration, (b–d) successive stages of propagation. (e) Experimental configu-
ration at a later stage. Lines diverging from pointB were drawn to guide the eye.

Fig. 2 Scanned crack trajectories for two different experiments. Open circles
(squares) show the position of the tool generating the fracture path outlined with
the continuous (dotted) line. Density of circles is inversely proportional to the
speed of the pushing tool. The arrows show the directions of the tool path for
each experiment. Inset: close-up showing the initial cut AB made to start
the crack.

Fig. 3 (a) Detail of the fracture process after Fig. 2c. (b) Geometry of the fracture
process. The white zone defines the convex hull or the region that is free to move
out-of-plane. The dark gray zone is stretched and the resulting elastic energy
feeds the crack propagation process.
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3 Theoretical description

To understand these striking properties and the generation of
the spiral, we follow the approach developed in the study of an
oscillatory crack path made by a blunt object.16,19,20 Since
resistance to membrane stretching and membrane fracture are
linearly proportional to membrane thickness (t), and
This journal is ª The Royal Society of Chemistry 2013
membrane bending goes with thickness cubed (t3), the ease of
bending versus stretching or fracture increases for thinner
lms. As a result, thin lms primarily respond to loads by
bending rather than stretching or fracture, and approximate
geometrical solutions can be obtained by studying isometric
deformations of the initial at geometry.23

Isometric deformations, however, require boundary condi-
tions compatible with large displacement of the lm. This is
only possible inside the white in-plane area shown in Fig. 3,
where the lm easily deforms out-of-plane without stretching.
This “so” region is in geometrical terms the convex hull or
more precisely, the minimum convex domain that contains the
crack path.15 When placed inside this so region, the tool only
bends the lm. But the lm is stretched if the tool pushes the
borders of the so region and moves to the dark gray region
shown in Fig. 3b. Outside the so region the main contribution
to the elastic energy is the stretching energy located along the
edges connecting the tool position with points A and T . For
simplicity we assume in the following that the tool is close to the
crack tip T (see ESI† for more general conditions). In this case
the stretching energy is concentrated around the line joining
the tool and the crack tip, and must be a function of the two-
dimensional Young's modulus Y ¼ Et of the lm (where E is the
Young's modulus), L is the distance from the tool to the crack
tip, and the stretching angle a dened by the vertex at T of the
dark gray region (see Fig. 3). The only combination for the
elastic energy compatible with dimensional analysis is UE(L, a)
¼ YL2u(a), where u($) is a growing function of a that for a � 1
can be expanded to u(a) z aan+1, where a is a dimensionless
constant, so that

UE(L, a) ¼ YL2u(a) ¼ YL2aan+1 (1)

The value n ¼ 4 is derived by Audoly et al.16 and n ¼ 3 by
Vermorel et al.12 in contradiction to measurements presented by
us elsewhere17,18 (n z 2.5, a z 0.0038). However, the results
presented here are fairly insensitive to the precise value of n and
the position of the tool along the segment AT .

Knowing the elastic energy, we can compute the force
applied to the lm by the blunt object through F¼ vdUE where d
is the normal displacement to the line AT , d ¼ L tan a. For a
xed position of the crack dd ¼ L sec2 ada z Lda, so that the
force in terms of our geometrical parameters is F(L, a) ¼ vaUE/L.

For a xed position of the tool the stretching energy stored in
the lm can be released by fracture. If point T moves a distance
Soft Matter, 2013, 9, 8282–8288 | 8283
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Fig. 4 The morphology of the soft zone defines three different stages in the
evolution of the spiral, in light gray we show the soft zone for each stage. (a) First
stage: the spiral grows with a center point at A . (b) Second stage: the pole of the
spiral is now point B . (c) Third stage: the path grows by successive increments
applied to the line ET . (d) The figure shows the geometrical construction to
obtain the asymptotic center of the pole in our experiments (see text).
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ds (see Fig. 3), Griffith criterion21 gives the equilibrium condi-
tion dU/ds ¼ 0 (the position of the tool being xed), where
U ¼ UE + gts is the total energy of the system, s is the fracture
length, and g is the work of fracture of the lm. The variation of
the elastic energy when the crack moves a distance ds is
dUE(L, a) ¼ vLUEdL + vaUEda which we combine with the
constitutive relationship for the force into

dU/ds ¼ vLUEdL/ds + LFda/ds + gt ¼ 0 (2)

A crack moving along the direction of propagation b (dened
as in Fig. 3) readily implies the geometrical constrains
da ¼ �sin(b � a) cos ads and dL ¼ �cos bds. Hence, we obtain
an expression for dU/ds as a function of the angles a and b once
the constitutive relationships for the energy and the force in eqn
(1) are replaced in eqn (2). The maximum energy release crite-
rion vb(dU/ds) ¼ 0 (equivalent to minimizing the force10) and
eqn (2) give two relationships to determine the angles a and b.
We obtain

a ¼
�

‘E
aLðnþ 1Þ

�1=n
and b ¼ p=2þ n� 1

nþ 1
a (3)

here ‘E ¼ gt/Y is similar to an elastocapillary length22 and is 4
mm for our polymer lms. Although this derivation assumed
that the tool is much closer to the crack tip than to the other end
of the lip (of total length W), in fact these predictions hold even
if the tool is placed as far as 4W/5 from the propagating fracture
tip T (see ESI†).

With nz 2.5 and a� 1, we conclude that b is slightly greater
than a right angle. Moreover, the angle a depends weakly on the
distance L due to the low exponent 1/n z 0.4. Indeed when L is
multiplied by a factor 100 (a L ¼ 2 mm to L ¼ 200 mm range is
typical of experiments, see Fig. 2), a is divided by a factor of 6.
According to eqn (3), angle a varies24 from 25� to 4� and angle b
changes from 101� to 92�. This gives a total of 9� throughout the
generation of a spiral in Fig. 2, with an average value of 96�.

From here on we will therefore assume b to be constant in
our analysis, with a value larger than 90� (96� according to our
estimates). Propagation is then predicted to take place in an
angular direction b, independent of the position of the pushing
tool, thus explaining the reproducibility of the experiments
shown in Fig. 2.

We now can put together the elements leading to a loga-
rithmic spiral. We identify three stages in the propagation of the
crack. First, an initial stage (Fig. 4a) where the crack tip T
propagates in a direction with a constant angle b with respect to
the radius AT . This is a sufficient condition to have a loga-
rithmic spiral centered at point A with a pitch due to an angle
f ¼ p � b. Second, aer half a turn the crack reaches point C
and transforms the morphology of the convex hull (see Fig. 4a
and b). The so region is delimited by the line BT , so that the
crack follows another logarithmic spiral with the same angle
f ¼ p � b, but now centered at point B. The crack trajectory is
smooth across point C because the tangent keeps the same
angle bwith linesAT andBT . However, the jump fromA toB
in the position of the pole implies a discontinuity in the radius
of curvature R since for a logarithmic spiral15 R ¼ r/sin f. Third,
8284 | Soft Matter, 2013, 9, 8282–8288
aer roughly another quarter turn the convex hull is no longer
limited by the line BT . At position D (see Fig. 4c), the
construction point E denes the convex hull and moves
tangentially to the trail le by the crack path to exhaust pure
bending deformations. The crack path now develops around
itself in a self-similar way while the tear grows by successive
increments applied to the segment25 ET shown in Fig. 4c.
4 Numerical model and experiments

We use a numerical algorithm to generate the spiral path pre-
dicted by eqn (3). At each step the model calculates the convex
hull and then the direction of the propagation of the fracture.
Fig. 4c illustrates the procedure to obtain the direction of
propagation once the position of the crack in T is given. The
determination of the convex hull denes point E and the
unitary vector t (dotted arrow vector in Fig. 4) making an angle b
with the line ET . The fracture moves a length ds along t and a
new position of point T is computed. The current position of
point T redenes the morphology of the convex hull and the
process must be repeated again. The numerical curve obtained
from the algorithm can be studied locally to know how similar
the curve is to a logarithmic spiral. We follow the method
suggested in D'Arcy Thompson's book2 based on local geomet-
rical properties of the curve. To obtain the instantaneous value
of the spiral angle2,15 we calculate the rate dR/ds at which the
radius of curvature varies along the crack path. This quantity
has the value cot f for a perfect logarithmic spiral. Once the
local value of cot f is calculated in two neighboring points, we
compute the instantaneous position of the pole by intersecting
the lines making an angle f with the respective tangents at
those points. Finally, the determination of the pole position
gives the distance r and polar angle q (see Fig. 4d). The inset in
Fig. 5a shows the instantaneous position of the pole obtained by
This journal is ª The Royal Society of Chemistry 2013
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this numerical procedure. The pole is at point A and pointB in
the rst and second stages, respectively, and then moves
progressively towards a xed point O , an indication that the
spiral is asymptotically reaching a logarithmic spiral.

The semilog plot in Fig. 5a gives the numerical function
r¼ r(q). It shows how the path crack develops into a logarithmic
spiral since the slope of the gure represents the local value of
cot f. The slope is constant and equal to cot(p � b) in the
interval26 0 < q < 3p/2, as was expected from our analysis for the
rst and second stages. More interestingly, the slope also
approximates a constant number for large values of q. We can
easily understand the geometry of the asymptotic path from
studying the convex hull dened by a logarithmic spiral. We
show in ESI† that a perfect logarithmic spiral of angle f has an
angle b given by the transcendental relationship (see ESI† for
derivation of this property).

sin fe�cot f(2p � b) � sin(b + f) ¼ 0 (4)

A numerical solution yields, for instance, cot f z 0.27 for
b ¼ p/2.

To test the model, we study the geometrical shapes of the
tears obtained in our experiments. The pole was experimen-
tally xed at points A and B in the rst and second stages,
respectively, and a global method was used to obtain the
asymptotic position of the pole when the logarithmic spiral is
Fig. 5 (a) Semilog plot of the curve r ¼ r(q) in units of the initial distance r0 ¼
AB . The black line is obtained from our numerical spiral for b ¼ 92.3� . The circles
represent the experimental measurements of two spirals started with cuts in two
perpendicular orientations. The instantaneous pole in our experiments is chosen
as A for q < p, B for p < q < 3p/2, and the asymptotic value of O for 3p < q < 6p.
Inset: the instantaneous position of the pole obtained from the numerical model
for b ¼ 92.3� . The pole moves progressively to the asymptotic position O z [0.4,
0.1] in dimensionless units. The successive jumps in the position of the pole
reflects a discontinuity in the curve r ¼ r(q) and its curvature. (b) Fracture angle b

measured as a function of the polar angle q for the same two spirals shown in (a).

This journal is ª The Royal Society of Chemistry 2013
fully developed. Fig. 4d shows the experimental procedure to
obtain the pole position. Two parallel tangents to a logarithmic
spiral dene a line where the pole O must lie. The pole posi-
tion is obtained by intersecting two of these lines. In the
dimensionless coordinates of Fig. 5a (inset), we obtain an
approximate position [0.4, 0.2] for the pole in our experiments
which is consistent with our numerical model that gives the
asymptotic value [0.4, 0.1]. Once the position of the pole is
established, it is straightforward to measure from our samples
the distance OT and the angle of rotation q to obtain the
experimental curve r ¼ r(q).

The local values of b can also be extracted from post mortem
analysis of experimental crack path. Fig. 5b shows that b has
regular oscillations of period p around a constant value hbi ¼
92.3� � 9� (the error range represents the amplitude of oscil-
lations). The average value is consistent, but slightly lower than
our prediction b ¼ 96� (see Section 3). Oscillations represent
variations in the work of fracture due to anisotropy, that are not
considered in eqn (2). They can be cancelled out in the average
by doing a pair of experiments with initial starting cuts at
perpendicular directions or by taking several oscillations along
the same experiment (see Fig. 5b). We note that the amplitude
of oscillation (18� peak to peak) is larger than the overall vari-
ation (estimated 9�) given by eqn (3) when L changes in two
orders of magnitude.

Fig. 5a shows in a semilog plot the radius of the spiral as a
function of the angle of rotation in our experiments. The crack
path behaves roughly as a logarithmic spiral with an experi-
mental slope cot f ¼ 0.29 � 0.01 which is consistent with that
given by eqn (4), cot f ¼ 0.29, if the value b ¼ 92.3� is used. We
also observe oscillations around the exponential growth that are
due to material anisotropy, resulting in local variations of the
angle b observed in Fig. 5b.
5 The starting seed

We discuss the conditions to obtain a spiral growth of a tear.
Our initial seed, line AB, to propagate the crack was dictated
by simplicity. However, it has some disadvantages. The lm
contains two competing cracks along the rst and second
stages and care must be taken to avoid the propagation of the
crack at the position of the pole. In mathematical terms, the
convex hull has a perimeter with two discontinuities for the
tangent in the rst two stages. At these discontinuities, the
tangent denes an exterior angle28 X (¼ b in Fig. 4c) that
accounts for the change of curvature

Ð
ds R�1 ¼ X at the

discontinuity (here R is the radius of curvature of the convex
hull). Thus, the presence of an exterior angle implies a high
value of the curvature and stress concentration at the position
of the moving crack T and the pole.

The same rules followed by the crack propagation contain
the remedy for the stress concentration at the pole. We observe
that in the beginning of the third stage the second crack
disappears when point T passes point D (see Fig. 4c). The
convex hull perimeter now has a continuous tangent near the
subsequent point E which smoothens the curvature. To prevent
the presence of a second crack in the rst and second stages, we
Soft Matter, 2013, 9, 8282–8288 | 8285
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can design an initial seed with a convex hull outlined by a
perimeter with one exterior angle. This angle must be conve-
niently chosen to avoid shedding a new crack when propagating
the fracture. The obvious candidate is an initial cut having a
convex hull with the same shape of the spiral (region CDT E in
Fig. 4c). However, this does not exhaust the possible seeds. We
conjecture that any cut with a convex hull containing only one
point of discontinuity in the tangent which denes an exterior angle
X # b would lead to the same result.
6 Pulling spirals

Spiral crack paths are not restricted to the situation where a tool
is pushed against the sheet. Instead of pushing the lip ET in
Fig. 4c, the tear can be pulled upwards to propagate the crack, as
shown in Fig. 6. To systematically study spiral propagation by
pulling, we replace the initial straight incision made for the
pushing case by a circle cut with a curved notchAB that follows
the recipe given in the last section. The cut AB is conveniently
prepared to have a convex hull with no discontinuity at point A
and an exterior angle b at point B. By pulling upwards the ap
le by the notch, the crack atB starts propagating along a spiral
path (see ESI† where a movie of the process is presented).

Because of the very low bending rigidity, all the region where
the sheet can move out-of-plane does so (see Fig. 6). We have
seen earlier that this region is the convex hull of the cut. As a
result, the operator effectively pulls on a fold which is a segment
starting on the crack tip T and reaching tangentially the
previous cut at point E . This fold shares exactly the same
geometry with the lip on which the tool was pushing in previous
sections. However, the loading is of course different from the
pushing spiral. The fracture is now mediated by a fold con-
necting the ap with the lm where bending and stretching
energy is focused. In a rather similar case of a torn ap strongly
adhering to a substrate,10,13 fracture propagates with an angle b

lower than p/2. In the geometry studied here, we can only
Fig. 6 Spiral crack obtained by pulling on a flap of material. (a) Initial stage at
which a notch is cut tangent to a circular hole in the sheet; (b) initial pulling leads
to a crack path; (c) and (d), later stages of crack propagation. Note the way in
which the released strip twists along the pushing direction forming a pine tree
structure.

8286 | Soft Matter, 2013, 9, 8282–8288
provide a rough estimate of angle b ¼ p=2� 4
ffiffiffiffiffiffiffiffiffi
lB=L

p
based on

the assumption that the fold takes a cylindrical shape. Here L is
the total length of the fold, and ‘B ¼ B/gt is a new length scale
in the problem, involving work of fracture and bending rigidity
B. We again notice a weak dependence of the inward angle p/2
� b of propagation (inverse square root) with the width of the
fold L. Moreover, in our experiments this angle is very small (on
the order of 4 degrees for typical a value of L ¼ 10 cm) because
‘B � 30 mm. In fact ‘B / 0 when t / 0 (compare with ‘E that
remains constant in this limit), so that propagation tends to be
perpendicular to the fold in this innitely thin sheet limit.29 We
will therefore again assume that b is a constant in a rst
approximation. We then expect a self-developing logarithmic
spiral very similar to the previous case.

Proceeding in the same way as for the spiral obtained by
pushing, we determine the pole of the spiral obtained by pull-
ing, and thereaer we measure the distance OT , the angle of
rotation q, and the local angles a and b. In Fig. 7a we plot
r ¼ r(q). Fig. 7b shows that b has regular oscillations of period p

around a constant value hbi ¼ 86.9� � 9.0�. Here the error
includes the amplitude of the observed oscillations. The fact
that b < p/2 does not prevent the spiral to be divergent though.
The semilog plot of Fig. 7a shows that the crack path behaves in
average as a logarithmic spiral with an experimental slope cot
f ¼ 0.24 � 0.01 which agrees with the estimation given by eqn
(4) cot f ¼ 0.25. This lower pitch of the spiral is consistent with
propagation with a predicted angle b slightly lower than p/2.
Here again anisotropy of the material results in a periodic effect
on the direction of propagation.
Fig. 7 Experimental pulled spiral (inset: scanned fracture trajectory). Measure-
ment of the radius of the spiral as a function of the rotation angle for two spirals.
Here r0 corresponds to the minimum measured radius of the spiral obtained by
using our experimental method explained in Section 4. It corresponds to the
distance from the spiral pole to pointB , typically 0.7 cm. The figure at the bottom
represents measurements of propagation angle b exhibiting oscillations due to
anisotropy around an average value slightly lower than p/2.

This journal is ª The Royal Society of Chemistry 2013
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Although there is stress concentration at points T and E , the
soening of the curvature at point E acts as a crack stopping
mechanism that prevents this possibility. Thus, the tear will
grow by adding new increments dened by the characteristic
angle b of the specic conguration. In general, we expect that
other mechanisms of crack propagation may change the value
of b, but keeping the asymptotic spiral shape of the tear. This
robustness is further explained by the fact that for any possible
direction of propagation of the crack, 0 < b < p, eqn (4) gives
always a divergent path (0 < f < p/2). For instance, a lm
adhered to a substrate and pulled along the line ET will have an
angle b related to the material properties of the lm and
substrate as derived by Hamm et al.10

The authors have presented a patent30 in the context of the
design of efficient opening mechanisms in packaging of goods.
The patent takes advantage of two basic ideas put forward in
Sections 5 and 6: (1) a seed is required to allow only one crack to
move safely, without shedding more cracks, when tearing a
packaging lm, and (2) a spiral propagation is obtained no
matterwhatmechanismof tearing is used (pulling or pushing). A
spiral mode of tearing can be naturally applied to the opening of
a wrapper, in contrast to convergent cracks that require more
thanone pushing or pulling operation for complete unwrapping.
7 Conclusions

We have observed and theoretically described self-developing
logarithmic spiral crack paths in thin elastic and brittle sheets,
for two different loading conditions (pushing and pulling). In
both cases fracture propagation obeys the same geometrical
construction. A so zone, the convex hull, bends away, and
fracture propagates with a constant angle with respect to the
limiting lip of material connecting the ap with the lm. The
crack propagation adds more area to the convex hull in a self-
similar manner producing a spiral tearing. The asymptotic
logarithmic spiral path is independent of the initial shape of the
so zone. However, the starting seed must be designed with a
convenient shape in order to allow a single crack to propagate.

The process is very robust. Indeed when the size L of the lip
satises L [ ‘E (pushing) or L [ ‘B (pulling) the process does
not depend on the material properties and becomes purely
geometrical.29 Boundary conditions, particularly the size of the
frame that holds the sheet, are not determinant. This is
consistent with our assumption that all elastic energy focuses in
the vicinity of the line T E , which leads to satisfactory predic-
tions for the values of a and b, either in the pushing or the
pulling case.

The generality of the mechanism can be further illustrated
by applying it to tear thin metal lms. Indeed, if the fracture
process zone is small (low work of fracture27), our geometrical
description in terms of the convex hull still holds. Even if
plasticity also takes place in areas away from the crack but near
the fold, fracture propagation is still strongly oriented by
geometry.7–9,14 Thus, we expect spiral crack propagation to be
observed in different materials (brittle or ductile) and congu-
rations when material properties and the initial ap design
avoid the nucleation of a second crack while tearing.
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