
Probing Locally the Onset of Slippage at a Model Multicontact Interface

V. Romero, E. Wandersman, G. Debrégeas, and A. Prevost*

Sorbonne Universités, UPMC Univ Paris 06, UMR 8237, Laboratoire Jean Perrin, F-75005 Paris, France
CNRS, UMR 8237, Laboratoire Jean Perrin, F-75005 Paris, France

(Received 7 November 2013; published 4 March 2014)

We report on the multicontact frictional dynamics of model elastomer surfaces rubbed against bare glass
slides. The surfaces consist of layers patterned with thousands of spherical caps distributed both spatially
and in height, regularly or randomly. Use of spherical asperities yields circular microcontacts whose radii
are a direct measure of the contact pressure distribution. Optical tracking of individual contacts provides the
in-plane deformations of the tangentially loaded interface, yielding the shear force distribution. We then
investigate the stick-slip frictional dynamics of a regular hexagonal array. For all stick phases, slip
precursors are evidenced and found to propagate quasistatically, normally to the isopressure contours. A
simple quasistatic model relying on the existence of interfacial stress gradients is derived and predicts
qualitatively the position of slip precursors.
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In recent years, our understanding of the transition from
static to dynamic friction has been markedly changed with
the development of new imaging techniques to probe
spatially the interfacial dynamics at the onset of sliding
[1–4]. The transition from the stick to the slip phases was
found to involve the propagation of dynamical rupture
fronts, far from the Amontons-Coulomb classic picture.
Using true contact area imaging with evanescent illumi-
nation of a one-dimensional Plexiglas-Plexiglas plane
contact, Rubinstein et al. [1] measured slow fronts with
velocities orders of magnitude lower than the Rayleigh
wave velocity vR, along with sub-Rayleigh and fast
intersonic fronts. Up to the macroscopic slippage, these
fronts progressively invade the contact over a length lðtÞ
from the trailing edge [2]. Interestingly, using strain gauges
sensors distributed directly above the interfacial plane, the
same group reported strong correlations between lðtÞ and
the ratio of tangential to normal local stresses [5]. However,
in all these experiments, the contact was treated as a one-
dimensional interface. For a two-dimensional contact,
simultaneous measurements of both pressure and tangential
interfacial fields is still lacking and out of reach using Ben-
David and Fineberg’s approach. It also remains unclear
what physical mechanism sets the dynamics of lðtÞ and slip
fronts direction of propagation, despite numerous theoreti-
cal as well as numerical works [6–10].
In this Letter, we take advantage of recent developments

in micromilling techniques to design model elastomer
multicontact surfaces. These consist of thousands of
spherical caps distributed on top of a rectangular block,
all made from the same elastomer. We show that spherical
caps provide a unique way to measure optically local
normal and shear forces once in contact with bare glass
slides. We apply this novel technique to analyze the stick-
slip frictional dynamics of an hexagonal array of spherical

caps of equal height and radius of curvature. Local analysis
first reveals that pressure gradients are inherently present
for this plane-plane contact, and second that each stick-slip
event is mediated by slip precursors. These are found to be
quasistatic and to propagate normally to the isopressure
lines. We compare our findings with a simplified pressure
gradient based model where individual asperities are taken
as elastically independent.
Microstructured surfaces are obtained by pouring and

curing (see Ref. [11] for details) a PolyDimethylSiloxane
(PDMS Sylgard 184, Dow Corning) in a Plexiglas mold
fabricated with a desktop CNC Mini-Mill machine
(Minitech Machinary Corp., USA). The molds consist of
10 × 10 mm2 square cavities, 2.5 mm deep. Their bottom
surface is covered with spherical holes whose constant
radius of curvature R ¼ 100 μm is set by the ball miller
used. Holes are positioned spatially with 1 μm resolution
either over a regular lattice or at random and their
maximum depths are either equal or taken at random from
a uniform distribution in the range 40–60 μm. Resulting
PDMS surfaces are decorated with spherical caps which
match the designed pattern. For the present work, different
types of patterns were fabricated–two hexagonal lattices
with a base surface coverage Φ ¼ 0.4, one with constant
height asperities (LC) and one with random height asper-
ities (LR), and two random distributions with random
height asperities (RR), with Φ ¼ 0.2 and 0.4. Samples
are maintained by adhesion against a solid glass plate,
cleaned with isopropanol then dried, and put in contact with
a clean bare glass slide under constant normal load P. The
glass slide is mounted on a double cantilever system (see
Supplemental Material [12] and [11]) which allows us to
measure both P and the applied shear force Q with mN
resolution in the range [0–2.5] N. All experiments are
performed at room temperature. The glass slide can be
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driven at constant velocity v in the range ½4–1000� μm=s
along the x direction. The interface is imaged in trans-
mission with an LED array through the glass slide, with a
megapixel CMOS sensor based camera (Photon Focus,
130 Hz) or a fast camera (Photron Fastcam APX-RS,
1000 Hz). As shown on Fig. 1(a), light is transmitted at
every single microcontact and refracted by the spherical
caps elsewhere, resulting in a myriad of white circular
spots, whose radii ai can be extracted using image analysis
[Fig. 1(a), inset]. Assuming Hertz’s model to describe the
glass-spherical cap contact, the local applied load pi is
given by

pi ¼
4Ea3i

3ð1 − ν2ÞR ; (1)

where E is the elastomer Young’s modulus and ν ¼ 0.5
[11] its Poisson’s ratio. This allows computing the total
normal load Pc ¼

P
ipi. For all experiments, a linear

relationship is systematically found between Pc and P
over 2 orders of magnitude in P, irrespective of the type of
disorder and pressure distributions [Fig. 1(b)]. Hertz
assumption is thus clearly validated in normal contact
conditions. However, the slope of Pc versus P depends
slightly on the optical threshold used to detect ai. To
recover a unit slope, we thus calibrated the optical threshold
with a reference sample whose Young’s modulus E ¼
4.1� 0.1 MPa has been measured independently with a
JKR test [13]. We then kept the resulting threshold for other
samples and tuned E within experimental errors to recover
a unit slope. Upon shearing the interface, obtained by
driving the translation stage at constant v in the range
½20–120� μm=s, the microcontacts size changes marginally
from circular to slightly elliptic, still allowing pi to be
extracted within Hertz assumption.
Contrary to the usual pillar geometry of asperities

[14–16], spherical asperities do not bend nor buckle. It
is thus possible to locate unambiguously with sub-pixel

accuracy (1=24 pixels, ∼400 nm) positions of the micro-
contacts centers and follow, using a custom made algorithm
written in MATLAB (MathWorks), their displacements with
respect to their initial position, uc [Fig. 1(c), upper panel].
The same methods allow us to extract the displacement of
the back layer by monitoring positions of the base of
spherical asperities, ub [Fig. 1(c), lower panel]. Defining
δ ¼ uc − ub as the displacement of the cap top with respect
to the back layer, we measured δ ≈ αvt with α ≈ 0.032 for
the LC pattern. Neglecting any microslip at the edges of the
microcontacts [11], the local shear force qi is proportional
to ai [13], according to

qi ¼
8Eai

3ð2 − νÞ δ: (2)

The total shear force Qc is obtained writing that
Qc ¼

P
iqi. For all patterns, Eq. (2) provides a good

approximation for the local shear force as shown on
Fig. 1(d). A one-to-one linear relationship between Qc
and Q over 2 orders of magnitude is found. The inset of
Fig. 1(d) illustrates this agreement with QðtÞ and QcðtÞ.
We now turn onto analyzing in details the frictional

dynamics of the LC pattern, the simplest available texture,
sheared along x. Q is found to increase up to a static
threshold, beyond which a stick-slip instability always sets
for all P and v within [20 μm=s–120 μm=s] [Fig. 1(d),
inset]. In the stick-slip regime, the spatial distribution of
local normal forces is found to be nonuniform with a
characteristic saddle-like shape [Fig. 2(a)] and is time
invariant. Such nonuniformity presumably results from
combined effects of a curvature of the PDMS sample at long
wavelengths, contact loading configuration and history [5]
and Poisson expansion [14]. Analysis of the displacement
curves ucðtÞ reveals that during initial and subsequent
stick phases, slip precursors nucleate and eventually invade
the whole contact. In the stick-slip regime, they can be best
evidenced when looking at two-dimensional velocity field

FIG. 1 (color online). (a) Contact image of a RR sample (Φ ¼ 0.4, P ¼ 2 N). Inset: single asperity in contact (contact diameter 2ai).
(b) Pc versus P for all patterns (different colored symbols) loaded normally. (c) Microcontact (back layer) displacements ucðtÞ [ubðtÞ]
for 23 microcontacts chosen at random in the LC sample (v ¼ 80 μm=s, P ¼ 2 N). pi increases from bottom to top (blue to red). (d)Qc
versus Q for all patterns (different colored lines) in shear experiments. Inset: QðtÞ (solid lines) and QcðtÞ (dashed lines) for the LC
pattern with P ¼ 0.5, 1, 2 N (bottom to top) and v ¼ 80 μm=s.
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snapshots duc=dt [Figs. 3(a)–3(c)] at three instants shown on
Fig. 3(d) (see Supplemental Material [12]). In the stick phase
(t ≤ ts, where ts is the time of slip, different for each event),
theyappearasspatially localizedstructureswith largenegative
velocities, indicative of a collective backsnapping of the
microcontacts [Figs. 3(a)–3(c)]. A secondary slip pulse also
forms several asperities behind the first one [Figs. 3(b)–3(c)].
These twoconsecutive slip pulses are systematically observed

for all stick-slip events, and always nucleate on the contact
edges. When focusing on the central band 4 ≤ x ≤ 9 mm,
front lines are essentially oriented along x normally to the
isopressure lines (see Figs. 3(a)–3(c) [17]). Within this band,
thevelocity fieldalongtheydirection isaveragedoverx tohelp
visualizing how the front propagates spatially over time.
On the resulting spatiotemporal plot [Fig. 3(e)], both first

and second slip pulses are visible, each of them consisting
of two branches, almost symmetric with respect to the
y ≈ 6 mm axis. The first slip pulse appears to propagate
initially with a constant velocity before continuously
accelerating as t approaches ts, reaching a maximum
velocity of about 0.5 m=s, 2 orders of magnitude lower
than vR (≈ 30 m=s for PDMS). The observed scenario
remains qualitatively similar for the first loading stick
phase, but slip precursors are more heterogeneously dis-
tributed, preventing a direct quantitative analysis. This
difference is likely related to slight pressure distribution
rearrangements during the first loading phase. For the
present work, we have thus chosen to focus on the
stick-slip regime only.
For each stick-slip event, front positions were obtained

by detecting individual times of slip for each asperity in
contact, using their displacement ucðtÞ, allowing us to
obtain them with a better accuracy. Mean front positions
versus mean times of slip were deduced by averaging both
individual slip times of all asperities at the same y position
(within the central x band) and mean front positions on all
stick-slip events. Similarly to the velocity spatiotemporal
representation, such curves are almost axisymmetric
around y ≈ 6 mm, allowing us to extract the distance c
to this axis of symmetry, which is a direct measure of the
remaining stick zone extension. This procedure was applied
for 6 experiments at P ¼ 2.36 N with increasing driving
velocities v. Figure 4 shows the resulting c versus (ts − t)
for the first slip pulse [Fig. 4(a)] and the same data with the
time axis multiplied by v [Fig. 4(b)]. All curves at different
v are found to overlap on the same master curve, suggesting
that propagation of slip precursors results from a quasistatic
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FIG. 3 (color online). (a)–(c) Velocity field snapshots, obtained
at 1000 Hz, at times t1 (a), t2 (b), and t3 (c). SP1 (SP2) stands for
1st (2nd) slip pulse. The black arrow shows the direction of
sliding. Vertical lines delimit the region defined in Fig. 2(a).
(P ¼ 2.36 N, v ¼ 50 μm=s) (d) QcðtÞ for the stick-slip event of
(a)–(c). Dashed lines are drawn at times t1, t2, and t3. (e) Spa-
tiotemporal plot of the velocity field along y averaged for
4 ≤ x ≤ 9 mm. Velocities are given in mm=s. T is the delay
between SP1 and SP2.
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FIG. 4 (color online). (a) c versus (ts − t) for the first slip pulse
and v ¼ 20(plus sign), 30(square), 50(diamond), 80(asterisk),
100(triangle), 120ðcircleÞ μm=s. (b) c versus vðts − tÞ. (c) Log-
log plot of (b). The solid line is a power law of exponent 1=3. The
dashed line is the model prediction.

(a) (b)

FIG. 2 (color online). (a) Spatial distribution of
normal local forces (in N) for the LC pattern in the
stick-slip regime (P ¼ 2.36 N, v ¼ 50 μm=s). (b) Pressure
(filled circle) and radii (plus sign) distributions averaged along
x in the region bounded by the two vertical lines in (a).
The line is a fit aðyÞ ¼ a0 þ a1yþ a2y2 with fa0; a1; a2g ¼
f8.37 μm; 6.27 10−3;−0.51 m−1g.
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mechanism. Note that these curves do not include any data
at t > ts in the slip phase. For t > ts, a fast front which can
be seen as the second vertical yellow line on Fig. 3(e),
propagates from the center to the edges with a velocity
larger than 2–3 m=s. This front whose nature is possibly
inertial is not further studied here.
On the experimental side, our measure of cðtÞ is analo-

gous to that of L − lðtÞ of [2,5], with L being the size of the
system. Our work provides two additional features of these
slip fonts: (i) their quasistatic nature; (ii) the way the two-
dimensional pressure landscape controls their propagation,
as discussed below. On the theoretical [9,18,19] and numeri-
cal [7,8] sides, recent investigations have predicted similar
quasistatic behaviors for the slip front position lðtÞ, and its
relation to the stress landscape [7], L and local friction laws
[8,9,18,19]. In particular, [9,18,19] assume rate and state
interfacial friction laws, and predict the existence of a critical
length lc beyond which the system becomes unstable. For
l < lc, slip fronts are found to be quasistatic [18,19], but the
precise analytical form of lðtÞ is not well established. For
l > lc, a dynamic front invades the interface with a velocity
∼vR, leading to macroscopic slippage. The slight change of
slope of cðtÞ observed at t ∼ ts [Fig. 4(c)] could be a
signature of such a transition, as in [2]. However, front
velocities at t ∼ ts (Fig. 4) appear to be 2 orders of magnitude
smaller than vR, ruling out inertia as the driving mechanism.
To understand the form and quasistatic nature of cðtÞ, let

us model our system with asperities distributed along y
(the direction normal to the isopressure lines) on a one-
dimensional regular lattice, and let us neglect the elastic
interaction between them (i.e., absence of any back layer).
In the Amontons-Coulomb description, slip of an asperity i
occurs once qi ¼ μspi, where μs is a static friction
coefficient. Combining Eqs. (1) and (2) yields the maxi-
mum displacement δis, beyond which slip occurs, as

δis ¼ μsa2i =R: (3)

An asperity i initially at position yi0 will slip when its
position reaches yis ¼ yi0 þ δis ≈ yi0, since δis ≪ yi0. With
Eq. (3), the front position and time of slip, respectively
yw ¼ yis and tis ¼ δis=ðαvÞ, are thus predicted for a given
pressure profile. In an ideal plane-plane contact with a
uniform pressure, all asperities should slip simultaneously
and no slip pulse should be observed. In our experiments,
however, pressure gradients are clearly present along y
[Fig. 2(a)]. Taking a continuous limit, the contact radius ai
can be well fitted by a parabola aðyÞ ¼ a0 þ a1yþ a2y2

[Fig. 2(b)]. This expression, with Eq. (3), provides the
position of the front with respect to its position at threshold,
cðδÞ¼ywðδsÞ−ywðδÞ, where δs¼ðμs=RÞða0−ða21=4a2ÞÞ2
is the threshold displacement at t ¼ ts. It reads

cðδÞ ¼ − 1

2a2
ða21 − 4a2ða0 − ðRδ=μsÞ1=2ÞÞ1=2: (4)

This quasistatic model can be extended to any pressure
distribution and provides a description of the first loading
phase, where all microspheres start from their initial
unloaded position. Once a sphere slips, it relaxes back
from δis by δir ¼ ðΔμ=μsÞδis before the beginning of a next
loading phase, where Δμ ¼ μs − μd with μd a dynamical
friction coefficient. The model can be extended to the
stick-slip events by replacing μs by Δμ in Eq. (4). Note
that close to the threshold (δ − δs ≪ δs), cðδÞ behaves
asymptotically as cðδÞ ¼ Kðδs − δÞ1=2 with K ¼ ð2R=
ðΔμða21 − 4a0a2ÞÞÞ1=2. One thus expects cðδÞ to follow a
power law of exponent 1=2. Predictions of Eq. (4) are
plotted on Fig. 4(c), with fa0; a1; a2g given by the para-
bolic fit [see caption of Fig. 2(b)] and Δμ ¼ 0.157,
obtained by averaging values of Δμ for all experiments.
The predicted curve qualitatively succeeds in reproducing
the measured trend and right order of magnitude of cðδÞ,
but fails quantitatively. Careful examination of the data
suggests that c follows indeed a power law, but with an
exponent closer to 1=3 than 1=2 [Fig. 4(c)]. Our model
lacks ingredients which could explain the discrepancies.
First, it is limited to a one-dimensional description, whereas
the slip propagation is clearly two dimensional. Second, it
does not take into account the elastic coupling between
asperities. Including both effects is expected to improve
comparison, but is beyond the scope of this Letter.
Despite its limitations, this model provides a simple

mechanism to generate slip pulses, relying on interfacial
stress gradients. Interestingly, it also predicts the existence
of second slip pulses whose propagation is delayed by T, as
evidenced on Fig. 3(e). T results from the sum of (i) the
individual relaxation time τ of a sphere sliding back from δis
by δir, and (ii) the time to reach δis again, yielding
T ¼ τ þ δir=ðαvÞ. Such relationship is actually verified
experimentally (not shown), asserting furthermore the
quasistatic character of the measured slip pulses. Taking
τ ¼ 7.6� 0.5 ms, the averaged relaxation time over all
trajectories, one gets δir ≈ 0.35 μm, comparable to the
measured averaged value of 1 μm. In addition, the second
slip pulse can only be identified if Tði ¼ 0Þ < ts. This
gives a limiting driving velocity vl above which no second
slip pulse can be observed, vl¼ 1

τ ðδr−δi¼0
r Þ¼

Δμ
αRτðð4a2a0−a21=4a2Þ2−a20Þ. Using the experimental val-
ues, one gets vl ≈ 4.4 mm=s, much larger than the maxi-
mum tested driving velocity. This agrees with a systematic
observation of a second slip pulse at all velocities.
This work has been limited to the stick-slip regime,

where slip fronts could be characterized and compared to a
noninteracting model. A similar phenomenology is
observed for the first stick event, and will be explored in
a future work. Our results demonstrate how combining
surface micropatterning and interface imaging allows
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accessing the mechanics at the level of single asperities.
This has been applied to a hexagonal array of equal
height microasperities, revealing that slip precursors propa-
gate quasistatically orthogonally to the isopressure lines. It
will be extended to more elaborate patterns in a
future work.
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