
AVisual Approach to Measure Cloth-Body and
Cloth-Cloth Friction

Abdullah Haroon Rasheed , Victor Romero , Florence Bertails-Descoubes, Stefanie Wuhrer,

Jean-Sebastien Franco , and Arnaud Lazarus

Abstract—Measuring contact friction in soft-bodies usually requires a specialised physics bench and a tedious acquisition protocol. This

makes the prospect of a purely non-invasive, video-based measurement technique particularly attractive. Previous works have shown that

such a video-based estimation is feasible for material parameters using deep learning, but this has never been applied to the friction

estimation problem which results in even more subtle visual variations. Because acquiring a large dataset for this problem is impractical,

generating it from simulation is the obvious alternative. However, this requires the use of a frictional contact simulator whose results are not

only visually plausible, but physically-correct enough to match observations made at the macroscopic scale. In this paper, which is an

extended version of our former work A. H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A Lazarus, “Learning

to measure the static friction coefficient in cloth contact,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9909–9918,

we propose to our knowledge the first non-invasive measurement network and adjoining synthetic training dataset for estimating cloth

friction at contact, for both cloth-hard body and cloth-cloth contacts. To this end we build a protocol for validating and calibrating a state-of-

the-art frictional contact simulator, in order to produce a reliable dataset. We furthermore show that without our careful calibration

procedure, the training fails to provide accurate estimation results on real data. We present extensive results on a large acquired test set of

several hundred real video sequences of cloth in friction, which validates the proposed protocol and its accuracy.

Index Terms—Friction estimation, cloth simulation, deep learning, material estimation, inverse problem

Ç

1 INTRODUCTION

COMPUTER vision techniques are powerful in analysing the
shape and motion of physical objects from mere images.

Yet, accurately inferring physical properties from visual data
is still a challenging problem [40]. Our work aims at estimat-
ing physical parameters from the rich dynamic effects that
can be observed in cloth motion. Applications range from
non-invasive estimation of cloth properties in textile engi-
neering to realistic clothing synthesis for virtual and aug-
mented reality. So far, most existing methods for cloth
acquisition have focused on estimating clothmaterial param-
eters, that is, its stiffness and mass [3], [14], [42]. Friction at
contact is a much less studied problem due to the difficulty
of modelling, measuring, and simulating dry frictional con-
tact accurately. However, friction has a high impact on the
overall cloth dynamics, as illustrated in Fig. 1.

Measuring a friction coefficient accurately in cloth is a long-
standing problem, mainly studied in textile engineering [28],
[36]. Better accuracy often comes at the expense of tedious
and generally invasive protocols with specialised mechanical

sensors and hardware. Yet, the visual variability induced by
friction shown in Fig. 1 hints at the possibility of a purely
vision-based protocol, discriminating the different motions
and folding patterns observed under friction variation. This
general idea has recently been leveraged by a few studies in
physics to infer friction coefficients from contacting slender
structures like hair strands [9] or stiff ribbons [32]. While such
methods effectively exploit the connection between observed
geometry and friction, they are only valid for very specific
classes of materials and conditions – such as setups where
gravity plays a negligible role. A major challenge for cloth is
that, larger friction coefficient differences are easily distin-
guished, but smaller differences yield increasingly subtle
visual differences (Fig. 1, centre and bottom rows).

In this work, we propose a first step towards a generally
applicable vision-based method to estimate the dry friction
coefficient between cloth and a contacting surface, and
between two cloth samples.

To this goal, we use a Long-term Recurrent Convolutional
Network (LRCN) [15] to regress from an input video showing
a cloth motion under contact to both material parameters and
a dry friction coefficient. Our network is trained on sequences
of simulated cloth deformations. We leverage the recent simu-
lator ARGUS [22] for capturing dry frictional contact in cloth,
and search parameter settings that lead to sufficiently accurate
results for our needs. Our results indicate that the network,
trained exclusively on simulated data, does generalise to real
videos showing similar cloth motions; and this in spite of the
differences between the renderings of the simulations and the
real captures.

In scenarios where capturing significant amounts of real
data is prohibitive, many works have explored the idea of
training on simulated data with the aim to generalise
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inference on real data. These include approaches for cross
domain transfer learning [19], [37] and interpretable low
dimensional representation learning [18]. Our approach can
be considered orthogonal to such efforts as we present a
protocol to calibrate simulated data generation by experi-
mental verification, before learning a model from this data.

This paper is an extension to our previously presented
work [31], which trains a model on synthetic data, gener-
ated from a verified simulator, and tests it on real captured
data to estimate material and friction parameters between a
cloth and a substrate. In addition to [31], we show here that
calibrating the simulator properly before generating the
training data is a mandatory step for achieving good esti-
mates on real data. Furthermore, we extend our framework
[31] to estimate friction in case of cloth on cloth contact, a
harder measurement problem which benefits from the
visual nature of our measurement protocol. Finally, we
show examples of applications of our measurement proto-
col by creating simulations of cloth materials and substrates
from our real captured test data.

Altogether, the combined contributions of our previously
presented work [31] and that of our above extensions,
merged in this paper, are the following:

� We present a deep learning based algorithm to solve
the inverse problem of parameter estimation for cloth
simulation. Our algorithm measures the material and
friction properties of cloth given a video sequence.

� To generate physically correct training data, we vali-
date the ARGUS simulator physically and calibrate its
accuracy against a constrained, measurable real-
world physics experiment.

� We demonstrate the usefulness of physically validating
the simulator before learning data from it; to achieve
this we generate 3 datasets with a variable level of
physical accuracy, and show that only the dataset pro-
duced by the calibrated simulator leads to satisfactory
prediction results of our learning-based method.

� We release 2 real captured test datasets of 315 and 225
real videos in controlled conditions closely matching

the simulation setup, and make baseline estimates of
friction values within a measurement error range.

� We demonstrate the validity of our learned model by
achieving an error <0:1 from the baseline range on
93.6 percent of real test data capturing friction
between a cloth and substrate.

� We extend our full method to cloth on cloth contact.
We present friction parameter estimation results on
this test dataset and achieve an error of <0:1 from
the baseline range on 81.1 percent of the test dataset.

2 RELATED WORKS

Inferring material properties of an object from geometric or
visual data has been studied in various communities includ-
ing computer vision, computer graphics, textile engineering
and physics. We first introduce the general model of friction
we consider and existing techniques to measure it, before
focusing on slender elastic structures such as cloth.

Dry Friction Models. Dry friction is a force that opposes
the relative motion of two solid objects. The way in which
the interface of two compliant objects in contact evolves
when subjected to load is complex, and finding the precise
law that describes this phenomenon remains an open prob-
lem in physics and mechanics. Our work is based on Amon-
tons-Coulomb’s law [2] for friction, which is a commonly
used model that successfully approximates this complex
scenario at the macroscopic scale. In this model, surfaces in
contact interact throughout normal and shear forces, and
sliding occurs when the ratio between the shear and normal
force reaches a threshold value, called the static friction coeffi-
cient, which is independent of the area of contact and
depends only on the roughness of the interacting surfaces.
While cloth simulators usually rely on an isotropic Coulomb
friction model [6], [33], some recent works have explored
anisotropic variations of the Coulomb model when simulat-
ing interacting rigid bodies and cloth [8], [17], [30]. Interest-
ingly, Chen et al. [8] perform extensive cloth-solid
experiments and report a few frictional measurements that
exhibit either some anisotropic behaviour, or a non-constant
friction coefficient (i.e., a nonlinear relationship between the
tangential and normal contact forces). Furthermore, in our
cloth-cloth experiments, we noted that in a few cases, depar-
tures from the Coulomb model would arise from cohesive
effects due to interlocking fibres. However, despite such
discrepancies, overall we observed that the isotropic Cou-
lomb model could already capture most of the cloth-solid
and cloth-cloth interactions faithfully. Moreover, although
simple in appearance, the isotropic Coulomb model actually
proves difficult to be simulated numerically, as it is a non-
smooth model characterised by a non-constant threshold
depending (linearly) on the normal contact force. One
strength of the ARGUS simulator precisely lies in its capabil-
ity to capture this threshold accurately, without relying on
any regularisation. For these reasons, we stick to the isotro-
pic Coulomb model in our work, and show the validity of
this model through our results. In the future, it would be
interesting to refine our study by considering non-constant
friction coefficients, anisotropy, and cohesion.

Friction Measurement. Estimating friction and material
parameters jointly from visual data has recently become a
topic of study in computer vision. Miguel et al. [27] propose

Fig. 1. Three cloth motion sequences simulated with the same material
but different friction coefficients at contact (m). Top: m ¼ 0:0, Centre: m ¼
0:5, Bottom: m ¼ 0:6. Differences are significant between m ¼ 0:0 and
m ¼ 0:5, but more subtle between m ¼ 0:5 and m ¼ 0:6.
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a reparameterization of Dahl’s friction model [13] for esti-
mating internal friction in cloth from geometric information.
Internal friction is however different from static friction at
contact since it models internal dissipation within the cloth,
hence this technique does not apply to our case. Wu et al.
[41] propose to use a generative model to estimate friction
and material parameters. Unlike our work, this method is
targeted at rigid objects. Zhang et al. [46] analyse visible
reflections, while Yuan et al. [44] combine visual and haptic
data to estimate friction information. Both works present a
static joint estimation of material and friction based on
visual attributes of the material, whereas we focus on the
dynamic behaviour of cloth under frictional contact and
wish to estimate the friction coefficient directly.

In textile engineering, friction estimation has been stud-
ied using invasive techniques [16], [25], [28], [36]. Some
studies in other fields connect the perception of friction (i.e.,
feeling) to actual measurements [7], [24] and visual fea-
tures [5]. These works show that visual features correlate to
friction information using perceptual studies.

In physics, a few isolated studies consider inferring dry
static friction coefficients from contacting elastic slender
structures. In particular, the friction of a hair fibre can be
inferred by the geometric configuration of a relaxed knot
formed by the hair [9], and the friction of a relatively stiff
isotropic ribbon can be inferred by the geometric configura-
tion of the ribbon’s bending and slipping behaviour when
pushed onto a substrate [32]. While these studies only hold
in specific scenarios with strict boundary conditions, they
demonstrate the relationship between geometric configura-
tions and friction for elastic slender structures. Our work of
estimating cloth friction based on videos is inspired by such
intriguing studies. Note that in order to obtain reference
friction measurements for evaluation, we use a classical
inclined-plane protocol [12], [36].

Material Parameter Estimation. The problem of estimating
material parameters from geometric or visual data has been
studied in different scenarios and for various types of mate-
rials, including soft deformable materials [35], [38], [43]. To
our knowledge, recovering material information from cloth
has always been formulated as a fitting problem, consisting
of three steps: first, considering a material model as a func-
tion of deformation of cloth, then capturing deformations,
and finally fitting the function to captured data. One
approach is to control boundary conditions by setting up a
physical apparatus for yielding deformations [11], [26], [39].
To avoid capturing deformations under controlled condi-
tions, some works have explored extracting material param-
eters from casually captured videos of cloth [3], [21].
Bouman et al. [4] capture stiffness and density of fabrics
from video using handcrafted discriminatory features.
Davis et al. [14] estimate material parameters based on vid-
eos that show small vibrating motions, and apply this
method to fabrics. Recently, Liang et al. [23] propose a com-
putationally efficient way of estimating material parameters
on synthetic data with a differentiable cloth simulator.

The closest methods to ours identify cloth material
parameters from videos [14], [23], [42]. Yang et al. [42] train
a neural network on simulated cloth deformations and use
the resulting architecture to infer bending and stiffness
parameters. This approach follows a recent trend in com-
puter vision and machine learning, where deep neural

networks are trained with simulated input data and tested
on real data. Training with simulated input offers the
advantage of yielding sufficiently large training datasets,
hence we follow the same approach here. However, unlike
previous methods, we carefully validate and finely tune our
simulator for physical realism, through an experimental
protocol described in Section 4.2.1.

Note that none of the works discussed in this section con-
sider estimation of friction at contact.

3 BACKGROUND

In this section we describe the elastic model used for our
material properties, and the Amontons-Coulomb’s law for
friction. We chose these models as they are known to be
realistic in the range of macroscopic deformations.

3.1 Material Parameter Space

To obtain physically accurate material parameter settings in
the simulator, we leverage the work of Wang et al. [39] that
encodes the material properties of ten representative classes
of cloth ranging from very soft to stiffer materials. Material
parameters are encoded as three parameters of the cloth
simulator ARCSIM [29]: a linear mass density, the coefficients
of the strain-stress matrix and the coefficients of bending
stiffness. This model has been previously used by Yang
et al. [42] for recovering cloth material parameters.

3.2 Amontons-Coulomb’s Law for Friction
Our work is based on Amontons-Coulomb’s law for dry
friction as this model successfully approximates the macro-
scopic behaviour of two solid surfaces at contact. In a sim-
plified version that we shall use here (no distinction
between static and dynamic friction coefficient), this law
defines the friction coefficient m as a threshold value for the
stick to slip transition for two contacting surfaces, and as
the coefficient relating normal and tangential forces during
sliding. More specifically, in our scenario, let ~R denote the
reaction force on the surface in contact with a piece of cloth.
We can divide ~R into two components: the force component
normal to the surface and the one tangential to the surface,
denoted by ~P and ~Q, respectively. The force ~P keeps the
two contacting surfaces from interpenetrating, and ~Q
opposes relative displacements between the two surfaces in
contact; more precisely, the two surfaces stick if ~Q � m~P
and they slip if ~Q ¼ m~P (the case ~Q > m~P is not admissi-
ble). Fig. 3-right illustrates these forces for a strip of material
that is pushed onto a substrate.

4 DATA GENERATION

Our first contribution consists in generating a dataset of
closely matching captured videos and simulations with, for
each video, corresponding material classes and friction coef-
ficients. We choose a simple motion that can easily be
replicated with a real piece of cloth while containing repre-
sentative material classes and friction parameters. In partic-
ular, we consider a drop and drag motion, in which a square
of cloth of side length 20 cm, suspended by its corners, is
dropped vertically on a substrate floor and then dragged
back and forth as shown in Fig. 4.
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4.1 Real Data Capture

We now present our experimental data capture setup. Since
we aim at predicting material and frictional properties from
videos, we constrain the setup of generating real data to a
controlled environment in order to remove sources of varia-
tion other than material properties and friction.

Cloth Materials. We use 9 materials in bright colours, out of
which 8 are close in composition and density to material clas-
ses defined in [39], and one (silk) is not covered by these mate-
rial classes. Details on the material features can be found in
Table S1 of the supplemental material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/TPAMI.2021.3097547, for this paper.
From each material we laser cut 20x20 cm pieces with 1x1cm
holders at two corners of one edge for clamping purposes.

Substrates. We choose 7 substrates that, combined with
our material samples, allow to cover a wide range of friction
behaviours. In particular, chosen substrate materials are
aluminium, aluminium-PET, ceramic, rough glass, smooth
glass, polyester-mirror and stainless steel.

Frictional behaviour of a single substrate can be very
complicated and difficult to characterise, and through our
experiments we have learnt that intuition is not reliable
enough to describe the frictional behaviour of a given cloth-
substrate pair. For this reason, we test several materials that
can be used as a substrate, and select 7 of them which give
us the broadest range of frictional coefficients with the cloth
materials we have chosen.

Experimental Setup. Using two translational stages (Thor-
labs LTS-300M) in front of a black background, we control
the drop and drag movement of the cloth for repeatability.
The total movement is characterised as follows. First, the
material is held 1 cm above the substrate and dropped by
6 cm in a movement, which accelerates from rest at
10mm=s2 until it reaches 10mm=s. Subsequently, the system
decelerates to reach 6 cm of total displacement. Immedi-
ately, the second motorised stage, for the horizontal dis-
placement, starts the horizontal drag by accelerating at
10mm=s2 until it reaches 10mm=s. This velocity is kept con-
stant until the system starts decelerating to achieve a total
displacement of 30 cm. We repeat this process forward and
backward twice per experiment to allow the observation of
a sufficient number of drag and wrinkling patterns.

Video Acquisition.With a calibrated camera, we record the
cloth motion from the viewpoint shown in Fig. 4, which
allows to observe wrinkling patterns. The whole video con-
tains around 300 frames, corresponding to 2.4 frames per
second. For each material/substrate pair, we repeat the
experiment 5 times, leading to 5 synchronised videos.

Reference Friction Measurements. A quantitative evaluation
of the predicted friction coefficients requires measurements
of the friction coefficient m for each material/substrate pair.
Accurately measuring m is an involved process in physics
and mechanics which is often performed through invasive
protocols. For simplicity, we capture merely a reference mea-
surement for m using the non-invasive inclined plane tech-
nique [12], [36]. We believe that the friction in the inclined
plane scenario is close to the one in the drag situation, and
hence its quantification provides a good reference estimation
for our purposes. The inclined plane protocol measures fric-
tion by placing an object on an inclined plane, and by increas-
ing the slope of the plane until the object starts slipping. The

friction coefficient is then computed based on the slope of the
plane at the point where the object slips.

To ensure that the reference measurement is robust, we
test for each material/substrate pair different locations and
orientations of the cloth on the substrate and do not find a
noticeable difference in the slippage angle. Our physical
setup of the inclined plane gives rise to a measurement error
due to the discrete motion of the plane. More details are
provided in Section S1.2 of the supplemental material, avail-
able online. Fig. 2 shows a histogram of the values of m that
were measured for all material/substrate pairs. Note that
our dataset covers a wide range of friction coefficients.

4.2 Simulated Data Generation

For training and testing, we simulate a physically accurate
dataset that closely resembles the videos captured using the
experimental protocol. Implementing Amontons-Coulomb’s
law poses difficulties in practice because the force response is
nonsmooth. This is further complicated by the requirement
for discrete representations in both space and time. We use
the ARGUS implementation [22] to simulate cloth deformation
subject to frictional contact, for two reasons. First, this state-of-
the-art simulator uses an efficient nonsmooth solver to model
the dry frictional behaviour for mesh-based systems. Second,
a free implementation of ARGUS is available on github.

4.2.1 Physical Validation of the ARGUS Simulator

To our knowledge, most frictional contact solvers for cloth,
including ARGUS, have never been validated against real
experiments. To verify that ARGUS produces physically accu-
rate simulations, we compare simulations produced by
ARGUS against physical experiments. This comparison is per-
formed in a constrained setting, in which the friction behav-
iour can be derived analytically. The reason for restraining
the experimental setting is that a verification against the
ground truth physical behaviour is not possible in more
complex scenarios, as measuring static friction accurately
remains a challenging problem in physics and mechanics.

The constrained experiment we use has recently been pro-
posed by Sano et al. [32] in the physics community, and is
depicted in Fig. 3 and further illustrated in the supplemental
material, available online for this paper. The experiment con-
siders the deflection of a strip, clamped at its top, that is verti-
cally pushed against a substrate with a vertical strain �y, as
illustrated in Fig. 3-right. Because of friction, this strip remains
pinned at its bottom for small �y, which is shown as the red
region in Fig. 3-left. The more the strip is pushed down, the

Fig. 2. Histogram of m for all material / substrate pairs.
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higher the frictional force holding the strip pinned. The strip is
geometrically constrained, hence depending on the value of
the friction coefficient, this system has two different outcomes.
First, the elastic forces can overcome friction, and the strip
abruptly slips. This regime is called slipped, and illustrated by
the green region in Fig. 3-left. Second, for rougher surfaces,
the frictional forces are high enough to prevent the strip from
slipping and it deforms until there is a real contact between
the strip and the substrate. This regime is called partially
slipped, and illustrated in blue in Fig. 3-left. Sano et al. show
analytically that in the case where gravity is negligible, these
outcomes are purely regulated by the friction coefficient, and
independent of the strip’s material parameters. That is, the
deformed shape of the strip only depends on the vertical
strain �y. The analytical solution allows to calculate at what
vertical strain the strip will slip (and thus will move from the
pinned to the slipped region), which is depicted as a black
curve in Fig. 3-left.

When simulating the experiment of Sano et al., a physi-
cally accurate simulator should simulate strips that slip
when the vertical strain lies on the black curve. We suc-
ceeded in matching this theoretical result with the output of
ARGUS, but this required carefully setting different numeri-
cal parameters, as explained in the following. First, the tem-
poral resolution of the simulation can be controlled by a
timestep parameter between two adjacent frames. Second,
the spatial resolution can be controlled by either forcing a
static discretisation to be used (whose resolution needs to
be provided), or by allowing an adaptive remeshing of the
geometry, in which case a rate of refinement needs to be
provided. Finally, ARGUS also provides contact solver toler-
ance values that can be controlled by a residual value and a
maximum iteration count of the solver, and damping forces
are allowed to stabilise the simulations. In our experiments,
we found that all of these numerical parameters heavily
influence the geometry of the resulting simulations, and
thus should be chosen carefully. Our rationale for finding
an adequate set of numerical parameters was, first, to set a
fixed and high resolution for the cloth mesh, avoiding small
energy perturbations due to remeshing; then, mimic a
quasi-static experiment by increasing damping forces, thus

removing spurious dynamical vibrations of the cloth;
finally, find the right level of accuracy by sufficiently
decreasing the timestep of the simulation, as well as the
solver tolerance, to the point where further refinement
would lead to indistinguishable results at our observation
scale. In our comparisons, we use a timestep of 0.5 millisec-
onds, a mesh resolution of 149 vertices for a 20 cm long rib-
bon, a maximum number of iterations of 50000 and a
damping value set to 0.002. We repeat the simulation using
2 materials having different Young’s moduli. Our simula-
tions yield the aqua curve shown in Fig. 3-left, which
matches the black analytic curve almost perfectly. Fig. 3-
right shows an overlay of the physical strip with our simu-
lated result shown as a red curve, and they are also in agree-
ment. Animated illustrations of the same is provided in the
supplemental material, available online for this paper.

These results certify that under correct numerical calibra-
tion, ARGUS generates simulations that match macroscopic
observations in a constrained setting, under negligible effect
of gravity. Note that while generating our training dataset,
we work under the hypothesis that the same numerical cali-
bration will guarantee highly realistic results while simulat-
ing cloth in a more general setting, i.e., when gravity is no
more negligible, and where both friction and material
parameters influence the geometry of the cloth. Our good
prediction results presented in Section 6.2 confirm that this
hypothesis is reasonable. As the calibrated parameter set-
tings make the simulation run-time significantly slower,
conversely, one could argue that our calibration process
imposes an overly strong constraint for our solver, hence an
unnecessarily large training cost. By generating training
datasets with varying accuracy, we check in the following
that our high accuracy calibration is actually mandatory to
obtain satisfying prediction results from real data. This com-
parison is presented in Section 6.2.

4.2.2 Dataset Generation

To generate the cloth simulation dataset, we implement the
exact path of the motorised stage used for the physical data
captures, which is analytically accessible, leading to a high
temporal synchronisation between the real data and the
simulations. Furthermore, the calibrated camera parameters
of the real data captures are used to render a similar view
for our simulations. This results in simulations that can be
considered physically valid to train a discriminatory model.

In order to ascertain the usefulness of our validation
experiment, described in the previous section, we generate
3 datasets with varying simulator parameters. For all data-
sets we use a high resolution mesh. However, we degrade
the accuracy of the generated data by relaxing the solver tol-
erance and the simulation timestep. The solver tolerance is
relaxed by keeping the residual value constant at 1e�15 and
by lowering down the number of solver iterations (which
results in a increase of the actual residual at each timestep).
The parameters used for each dataset are described in
Table 1. Out of the 3 datasets, High-accurate-solver-small-
timestep dataset corresponds to calibrated settings obtained
from the validation experiment.

In each dataset the drop and drag motion is simulated for
the 10 material classes measured by Wang et al. [39]. For
each material, 16 friction coefficients evenly distributed
between 0.0 and 1.5 are explored, which represents a

Fig. 3. Physical validation of ARGUS [22] under a constrained setting that
is well understood in physics [32]. After proper calibration of the simula-
tor, we observe simulations (dotted curve) that are in very good agree-
ment with the theory (black curve).

RASHEED ETAL.: VISUAL APPROACH TO MEASURE CLOTH-BODYAND CLOTH-CLOTH FRICTION 6687

Authorized licensed use limited to: INRIA. Downloaded on October 07,2022 at 15:04:28 UTC from IEEE Xplore.  Restrictions apply. 



reasonable range for fabrics according to values tabulated
in [16] and is in agreement with our reference measure-
ments. The resulting simulated 3D sequences contain 300
frames each. To generate a dataset of 2D videos, each simu-
lated sequence is rendered using 8 different texture maps
and from 3 different viewpoints and varying lighting condi-
tions, using the free Blender software. The addition of tex-
ture variation increases generalisation of learning as shown
in Section 6.3. One of the rendered viewpoints is calibrated
based on the real data to replicate the experimental settings
in our simulated data. Two additional viewpoints, are
selected to increase visual variation. Furthermore, to match
the experimental setup and reduce variability due to envi-
ronmental factors, we render a dark background and a sub-
strate floor in all of our renderings. The viewpoints for
simulated data, alongside real data, are depicted in Fig. 4.
Further illustrations of the dataset are provided in the sup-
plemental material, available online.

5 PREDICTION MODEL ARCHITECTURE

We now specify our pipeline to estimate friction of cloth
from a 2D input video. As the input to our model is a
sequence of images, we use a Long-term Recurrent Convo-
lutional Network (LRCN) model similar to those used for
action classification [15]. We are inspired by a previous
model that recovers a material class label of cloth from an
input image sequence [42]. A variant of this model, called
baseline model in the following, is explained in Section 5.1.

While the baseline model is effective at predicting a mate-
rial class, it performs significantly worse when trained to
predict friction coefficients (see Section 6.3 for details). We
therefore propose a novel pipeline for this task that condi-
tions friction onmaterial classes, as outlined in Section 5.2.

5.1 Baseline Model

In the baseline model by Yang et al. [42], convolution and
pooling layers are used to extract image features from each
frame. Their architecture of this feature extraction block is a
modified version of AlexNet [20]. We replace this architec-
ture by a simplified version of VGG16 [34] with ReLU acti-
vations as shown in Table 2. The weights are shared
between all feature extraction blocks. Let

fi ¼ CNNVGGðIiÞ; (1)

denote the image features extracted from frame Ii, where
CNNVGG is the simplified VGG16 of Table 2.

A sequence of learned image features f1; f2; . . . ; fk is then
passed to long short term memory (LSTM) layers, which
extract temporal information. The output of these layers is
finally passed to fully connected layers to learn a function
from the extracted spatial and temporal features to the data
labels. This can be written as

ĥ ¼ FCðLSTMðf1; f2; . . . ; fkÞÞ; (2)

where ĥ is the final likelihood computed for each material
class label, LSTM is a set of two LSTM layers and FC is a set
of two fully connected layers. The architecture is depicted in
Fig. 5. This architecture is trained with a standard categorical
cross-entropy classification loss, and for prediction, the class
label with the highest likelihood is reported.

5.2 Conditional Friction Model

The baseline model is significantly worse at predicting fric-
tion than at predicting material class. The reason is that dif-
ferent materials combined with different friction values can
yield visually similar features. For a fixed material, how-
ever, different friction values typically lead to visually dis-
tinctive behaviours. Motivated by this observation, we
estimate the friction coefficient using a model that is condi-
tioned on material classes.

Model. The model is shown in Fig. 5. In addition to a
sequence of 2D video frames Ii; i ¼ 1; . . . ; k, the model takes
as input a material class label. The material class label is rep-
resented by a one-hot vector m which is passed to a fully
connected layer with softmax activation. For this architec-
ture, the video frames are processed using the same

TABLE 1
Parameter Specifications of 3 Datasets, Generated for Varying

Levels of Accuracy

Dataset Solver Iterations Timestep

Low-accurate-solver-big-timestep 2000 1 ms
Low-accurate-solver-small-timestep 10000 0.5 ms
High-accurate-solver-small-timestep 50000 0.5 ms

Fig. 4. Dataset Examples: First and second row show corresponding
frames from real and synthetic data respectively. Third row shows 3
viewpoints rendered in the simulated dataset.

TABLE 2
Architecture Details for a Feature Extractor

Block

Name Description

Input Image 224, 224, 3
conv1a Conv 3 x 3, 64, ReLU
conv1b Conv 3 x 3, 64, ReLU
maxpool1 3 x 3, stride 2 x 2
conv2a Conv 3 x 3, 128, ReLU
conv2b Conv 3 x 3, 128, ReLU
maxpool2 3 x 3, stride 2 x 2
conv3a Conv 3 x 3, 256, ReLU
maxpool3 3 x 3, stride 2 x 2
conv4a Conv 3 x 3, 512, ReLU
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convolution and pooling layers as for the baseline model.
The material information is then cloned for each input
frame and concatenated with the feature vectors of each
frame, before being passed to the LSTM layers and on to the
fully connected layers. That is, the vector ŷ containing the
likelihood for each friction class label is computed as

ŷ ¼ FCðLSTMðFCsðmÞ_f1; . . . ; FCsðmÞ_fkÞÞ; (3)

where FCs denotes a fully connected layer with softmax
activation and_is the concatenation operator.

Training. The training loss can be written as

L ¼ �logP ðyjI1; I2; . . . ; Ik;mÞ; (4)

where y is the friction label provided for the training exam-
ples. This loss is implemented as the categorical cross-
entropy loss function. In both models, we use dropout layers
between fully connected layers for regularisation. We train
the baseline model to predict the material class. We use true
material class labels to train the conditional frictionmodel.

Data Representation. A data point for training or testing
consists of 30 frames sampled at regular intervals from a
video sequence and corresponding material class and fric-
tion coefficient as label. We select an input size of 30 frames
as the maximum number of frames from a single video
sequence that we can fit during the training cycle on a single
GPU, without running into memory constraints. We use a
split of 80; 10; 10 percent for training, cross-validation and
testing, respectively, which results in training on 92160
images from 3072 video sequences and testing on 11520
images from 384 video sequences for each dataset.

Model Initialisation. We observed experimentally that
model initialisation is important for training convergence.
Intuitively, this might be due to the fact that certain view-
points provide better discriminatory information than
others. To obtain training convergence in practice, we there-
fore train our models progressively by adding one rendered
viewpoint from the dataset in each training cycle to our
training data. After training simultaneously on all view-
points, we finely tune our model on the viewpoint which is
calibrated based on our experimental setup.

Prediction. At test time, we provide the true material class
label to the conditional friction model in order to observe

the effect of lower to higher accuracy friction information
present in our datasets. For real captured data, we provide
the model with closest matching material class label that is
present in our synthetic dataset. For a class label that is not
present in our synthetic training datasets i.e., silk, we pro-
vide the conditional model with a material class label pre-
dicted by our baseline model.

6 RESULTS AND DISCUSSION

In this section we present and analyse the results of testing
our model on real data, before discussing limitations. We
also perform ablation studies on synthetic data, in order to
perform a comparison between our conditional friction esti-
mator and baseline models, and to evaluate the model’s
generalisation capability.

6.1 Implementation and Evaluation Details
Our implementation uses Keras [10] and Tensorflow [1].
While we experimented with various optimisers, we empiri-
cally observed Adadelta [45] to converge faster. We use a
learning rate of 1.0 and a decay factor of 0.95. The training
time of our model and the baseline is between 4 to 6 hours
on all datasets with a single NVIDIA TitanX GPU and the
training converges in circa 30 epochs.

Evaluation Protocol. As our goal is to build a friction mea-
surement protocol for cloth, we evaluate our friction predic-
tion by considering the absolute difference between the
predicted value and the reference value. As the reference
measurement r for real data is only known up to a measure-
ment error e, we consider any value within the interval r�
e as having no error, and report the absolute difference of
our prediction to this interval. This provides an optimistic
estimate of the error as the error is calculated from the range
and not from an absolute value. For material parameter esti-
mation we report the top-1 and top-2 accuracy.

6.2 Results on Real Test Data
We present results on real data captured through our exper-
imental setup presented in Section 4.1. Our datasets con-
tains 5 videos for each material / substrate pair, leading to 5
test datapoints. We take the median prediction value out of
the five test datapoints to be the final prediction for any
material-substrate pair. We evaluate our test data using
models trained on 3 different datasets generated using the
ARGUS simulator as mentioned in Section 4.2.2.

Impact of the Simulator’s Accuracy. As can be observed in
Fig. 6, the model trained on the dataset High-accurate-
small-timestep outperforms the models trained on the two
other datasets Low-accurate-big-timestep and Low-accu-
rate-small-timestep (error of <0:1 on 65.07 percent of test
data compared to 25.3 and 34.23 percent, respectively).
Recall that the former dataset is generated using our cali-
brated parameters settings based on the validation experi-
ment described in Section 4.2.1.

Furthermore, it can be observed that while the <0:1 error
is not significantly different between models trained on
datasets Low-accurate-big-timestep and Low-accurate-
small-timestep, the model trained on the latter makes signif-
icantly less catastrophic errors, thus achieving an error of
<0:2 on 52.3 percent of test data as compared to 33.3 percent
of the model trained on the former.

Fig. 5. Proposed architecture to estimate friction conditioned on material
parameters. The coloured inlay shows the baseline model, which is aug-
mented with material class information to form the conditional friction
model.
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Overall, this study shows that degrading the accuracy of
the simulator causes a downgrade in prediction of our
learning-based method, hence it confirms the need for a
realistic enough simulator to generate input data. This justi-
fies the need for validating and calibrating the ARGUS simu-
lator properly before learning from it.

Impact of the Reflectance.
Fig. 7 shows a detailed breakdown of results for the model

trained on the dataset High-accurate-small-timestep. It is
noteworthy that the model accuracy reached on real experi-
ments when tested on all substrates (red curve, error of <0:1
on “only” 65.07 percent of data) is significantly lower than the
model accuracy obtained on synthetic test data (dark blue
curve, see details in next subsection). This decay in model
accuracy can be mostly attributed to the presence of reflecting
substrates in the real data, a factor that is not modelled in our
training data. The light blue curve shows that themodel accu-
racy is significantly worse on substrates which are reflective.
Removing these substrates from the evaluation yields an error
of <0:1 for 86.1 percent of data, as shown in the black curve.
This shows that the model has indeed learnt the friction
behaviour of cloth which is transferable from simulated to
real data, barring the confounding factors. One way to miti-
gate this degeneration on reflective substrates is to vary the
reflectance of the substrate floor during rendering of our sim-
ulated training data. After adding reflective substrate render-
ings, we obtain an error of <0:1 for 93.6 percent of real test
data on all substrates, as shown in the green curve. Note that
adding the variation to the training data improves the results
overall, yielding better results than training and testing with-
out reflectivematerials (black curve).

6.3 Results on Simulated Data

We perform ablation studies on simulated data in order to
assess our trained model’s ability to generalise for our
trained model. In the following experiments, we use a
model trained on our calibrated simulated dataset (High-
accurate-small-timestep).

6.3.1 Utility of the Conditional Friction Model

To compare the performance of our conditional model with
the baseline model, we train our model on synthetic data
while leaving out 10 percent of our dataset for testing.

As shown in Table 3, baseline model performs vastly
better at predicting material parameters than at predict-
ing friction coefficients. The conditional estimation
model performs better at predicting friction coefficients
than the baseline model which indicates that the material
and friction parameters are not decoupled in the global
behaviour of the cloth, and that adding material informa-
tion as an input parameter reduces the search space. Fur-
thermore, the error distribution for test data indicates
that our model learns coherently.

6.3.2 Generalisation to Unseen Textures

We render our training data with different textures to make
the model agnostic to appearance variations. To test this
generalisation ability, we render our simulations with a tex-
ture that has not been seen by the model during training.
We test our model on 160 sequences, and our model
achieves an error of <0:1 on 87.2 percent, and an error of
<0:2 on 95 percent of the samples. This shows that the mod-
el’s predictions do not degrade dramatically if an unseen
texture is encountered, implying that the model is capturing
more nuanced spatio-temporal phenomena to classify fric-
tion behaviour.

6.3.3 Generalisation to Unseen Viewpoints

We demonstrate the model’s generalisation ability to
unseen viewpoints. Starting with the camera position from
one of our simulated viewpoints, we rotate the camera ori-
gin, in both azimuthal and transverse directions by �5
degree intervals on either side to generate 6 viewpoints
which are 5, 10 and 15 degrees apart on either side. After-
wards we randomly select 20 material, friction and texture
combinations for each viewpoint and render them as our
test data. We report the accuracy for each viewpoint in
Table 4. While the accuracy degenerates with unseen view-
points, the decay happens progressively based on the differ-
ence in viewpoint from the original one. The asymmetry of
results in different directions of the azimuthal movement
can be attributed to the fact that in one direction less of the
cloth contacting the substrate is visible as compared with
the other one. Furthermore, during horizontal movement,
frontal viewpoints display better accuracy as opposed to
side viewpoints.

Fig. 6. Cumulative error plots for all datasets. Fig. 7. Cumulative error plots for dataset High-accurate-small-timestep
(red, black, light blue, green) and simulated test data (dark blue).
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6.3.4 Generalisation to Unseen Rendering Conditions

As our training data contains a variation of rendering condi-
tions, we demonstrate the model’s generalisation ability by
arbitrarily changing the lighting conditions and reflectance
of the substrate. We train our model without adding addi-
tional reflectance variance mentioned in Section 6.2. We test
our model on 160 sequences, and our model achieves an
error of <0:1 on 72.7 percent, and an error of <0:2 on 84.1
percent of the samples. This degradation is in line with the
results observed on real captured data. The rendering con-
dition variability is thus necessary to increase the generali-
sation of the model.

7 EXTENDING TO CLOTH ON CLOTH FRICTION

We extend our proposed non-invasive parameter estimation
model to cloth on cloth motion data captured by a physical
experimental setup. Estimating cloth on cloth friction has
been a relatively more difficult task due to the woven nature
of the materials. In the following sections, we describe the
modalities for generating our experimental data, extending
our synthetic dataset and the results from applying our
method in cloth on cloth friction regime.

7.1 Cloth on Cloth Friction Test Data

Using the same setup as detailed in Section 4.1 we generate
a new test dataset, using our 9 cloth samples from the previ-
ous experimental dataset. We now use each cloth both as a
substrate and as the suspended cloth for the ’drop and drag’
motion, thus having 81 cloth-cloth pairs in total. As a sub-
strate, the cloth is stretched out on to the base of the experi-
ment, such that the suspended cloth can drag on it. The
motion is further explained in Section 4.1. In total we obtain
5 videos of 300 frames each of 81 cloth-cloth pairs. An
extract from this dataset is shown in Fig. 8. Note that our
setup is not symmetric, as the roles played by the sus-
pended cloth and the cloth substrate are not equivalent due
to the stretching of the cloth substrate. This asymmetry will
be revealed by our friction measurements below.

In addition to our main setup, we record a baseline mea-
surement of friction of each cloth-cloth pair based on the

inclined plane method described in Section 4.1, using a similar
stretching for the cloth serving as a substrate. As our substrate
is a non-smooth surface, some cloth pairs display a thread
interlocking behaviour such that a stable measurement of a
baseline value is not possible. Thread interlocking is a phe-
nomenon that lies outside the scope of our friction model.
Therefore, we omit these pairs from our evaluation, consider-
ing only 5 cloth substrates, and as a result, only 45 cloth-cloth
pairs out of the 81 initial ones. The distribution of measured
baseline values for this reduced dataset is provided in Fig. 9

Out of the measured baseline values, certain cloth pairs
display a friction measurement higher than 1.5. Such values,
shown as orange bars in Fig. 9, clearly lie outside the pur-
view of our synthetic training dataset. We thus expect our
prediction method to fail on such data. Finally, as antici-
pated before, it is noticeable on the distribution of friction
coefficients that symmetry is not preserved between a cloth
pair in terms of friction values. This is understandable given
the nature of the setup, the cloth used as substrate being
stretched out while the cloth at the top sliding across it.

7.2 Extending the Synthetic Dataset

As our synthetic dataset does not include coloured sub-
strates, in order to improve our model’s capacity to general-
ise to cloth on cloth friction test data we extend our
synthetic dataset as follows. We use the dataset High-accu-
racy-small-timestep and out of the simulation sequence of
each friction coefficient (0.0 to 1.5) we take each material
and render it with a random colour chosen for both cloth
and substrate out of the colours picked from our real cloth
dataset. Images rendered from simulation sequences of the
same friction coefficient are presented in Fig. 10.

7.3 Evaluation and Discussion

In order to estimate friction on the cloth on cloth data, we
use a model pre-trained on the synthetic dataset High-accu-
racy-small-timestep. We further fine tune this model by
training it on additional synthetic renderings mentioned in

TABLE 4
Results on Unseen Viewpoints

Horizontal -15� -10� -5� 5� 10� 15�

Error < 0:1 65% 75% 80% 75% 65% 50%

Error < 0:2 70% 85% 95% 80% 80% 65%

Azimuthal -15� -10� -5� 5� 10� 15�

Error < 0:1 60% 80% 90% 80% 55% 40%

Error < 0:2 80% 80% 100% 85% 70% 60%

TABLE 3
Results on Simulated Test Data

Task Material Estimation Friction Estimation

Acc Top-2 Acc. Err <0.1 Err <0.2

Baseline 99.5 % 100.0 % 78.6 % 88.5 %

Conditional - - 98.3 % 100 %

Fig. 8. The figure shows an excerpt from our new Cloth to Cloth friction
evaluation dataset. This dataset includes a cloth stretched out as a sub-
strate and another cloth sliding over it using a motorised clamp.
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the previous section. We present prediction error plot from
both before and after fine-tuning our model in Fig. 11

In Fig. 11, we show results on test data that is within the
scope of our training dataset. Before fine-tuning the model
predicts an error of <0:2 on 72.7 percent of the data and with
fine-tuning the model improves to an error of <0:2 on 87.8

percent of the data and an error of <0:1 on 72.7 percent of test
data. This is comparable with the results achieved for our pre-
vious experimental test dataset discussed in Section 6.2. If we
include friction values that are beyond the scope of our train-
ing data i.e., >1:5, we achieve an error of <0:2 on 66.6 percent
and <0:1 on 53.4 percent of test data using the model fine
tuned on the extended synthetic dataset. Given the fact that
estimating cloth on cloth friction is a relatively more difficult
task, our method provides reasonably accurate results on the
test dataset while being trained purely on synthetic data.

8 APPLICATION TO CLOTH SIMULATION

Our measurement method can be applied successfully to
the simulation of cloth with realistic materials. Instead of
testing and trying various simulation parameters indepen-
dently to obtain a desired effect, as often done in Computer
Graphics, here the user can directly pick real materials for
both clothes and external bodies, and simply inject the cor-
responding measured parameters in the simulator. Result-
ing simulations then capture cloth dynamics as well as
cloth-cloth and cloth-body interactions in a consistent fash-
ion, since all the parameters only stem from the chosen
materials. To illustrate such a benefit, we perform two kinds
simulations, shown in Figs. 12 and 13.

First, we simulate two square pieces of cloth of different
material such that each one is dropped on a rotating sphere
made of a particular substrate, and dragged on the floor.
One scenario was performed by choosing Sparkle Sweat
(M02) for cloth and Aluminium for the sphere, and another
one by choosing Denim (M03) combined with Ceramic.
These scenarios take as friction coefficients 0.3 and 0.6,
respectively, which exactly correspond to our measure-
ments (see Table S6 in supplemental material, available
online). As shown in Fig. 12, the wrinkle patterns in both
experiments differ significantly given the choice of material
and friction coefficients.

Second, we demonstrate a realistic interaction between
real life cloth materials on an animated character. We simu-
late two sequences of cloth on cloth friction using our test
materials Sparkle Sweat (M02) and Tango Red (M06) with
the ARGUS simulator. In each sequence a shawl is dropped
on a clothed animated character.

As shown in Fig. 13, the behaviour of cloth to cloth contact
is dictated by the specified friction coefficient. The figure
shows corresponding frames from two simulated sequences.
The materials corresponding to M02 and M06 have been used
for both garments in the top and bottom rows respectively.

Fig. 9. Distribution of baseline friction values for cloth to cloth dataset.
The orange bars are outside the range of our synthetic training data.

Fig. 10. Extension of our synthetic dataset, with renderings more similar
to the new cloth on cloth dataset.

Fig. 11. Prediction errors on Cloth to Cloth friction test dataset.

Fig. 12. Corresponding frames showing the cloth coming into contact with a rotating sphere substrate. Top Row: M02 (Polyester 95 percent, Spandex
5 percent) with m ¼ 0:3, substrate: aluminium, Bottom Row M03 (Cotton 100 percent) with m ¼ 0:6, substrate: ceramic.
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The friction coefficients used are the ones predicted by our
measurement protocol on the test data, i.e., 0.3 and 0.7 (see
Table S9 in supplemental material, available online).

9 CONCLUSION

We propose the first protocol for vision-based measurement
of dry friction in cloth coming into contact with a substrate
and with another cloth. This protocol relied on a CNN-
based model trained on data generated by a physics based
simulator which has been verified using a physical experi-
ment. In this extended paper, we conclusively show the
effect of performing such verification on the simulator
before using it to generate training data. We also demon-
strate the measurement of cloth on cloth friction using the
same protocol and release a new dataset for the community.
These contributions open interesting future directions. First,
our method paves the way towards estimation of friction
in-the-wild by progressively relaxing the video-acquisition
protocol, with interesting applications for non-invasive
physics measurements, finer-grain capture of real surfaces,
and physically accurate re-simulations of pre-observed sur-
faces. Second, the successful use of calibrated synthetic sim-
ulator-based training could be transposed to other inverse
parameter estimation problems.
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