A Nonsmooth Newton Solver for Capturing Exact Coulomb Friction in Fiber Assemblies

Florence Bertails-Descoubes, Florent Cadoux, Gilles Daviet, Vincent Acary

Inria, Grenoble, France
Motivation

- Fibers assemblies are common in the real world
- But not much studied in the past
- Contact and dry friction play a major role w.r.t. shape and motion
 (volume, stable stacking, nonsmooth patterns, nonsmooth dynamics)
Fibers assemblies: Previous work

Main motivation

Hair simulation in Computer Graphics
Main motivation

Hair simulation in Computer Graphics

Three families of models
Main motivation

Hair simulation in Computer Graphics

Three families of models

1. Continuum-based [Hadap and Magenat-Thalmann 2001]
 → Hair medium governed by fluid-like equations
Main motivation

Hair simulation in Computer Graphics

Three families of models

1. Continuum-based [Hadap and Magnenat-Thalmann 2001]
 → Hair medium governed by fluid-like equations
 🧡 Macroscopic, intrinsic interaction model
Fibers assemblies: Previous work

Main motivation

Hair simulation in Computer Graphics

Three families of models

1. Continuum-based [Hadap and Magnenat-Thalmann 2001]
 → Hair medium governed by fluid-like equations
 - Macroscopic, intrinsic interaction model
 - No discontinuities
Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models

- **Wisp-based** (or fiber-based) [Plante et al. 2001]
 → A set of strands primitives combined with a simple interaction model
Main motivation

Hair simulation in Computer Graphics

Three families of models

1. **Wisp-based** (or fiber-based) [Plante et al. 2001]
 - A set of strands primitives combined with a simple interaction model

2. Allows for fine-grain simulations [Selle et al. 2008]
Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models

1. **Wisp-based** (or fiber-based) [Plante et al. 2001]
 - A set of strands primitives combined with a simple interaction model
 - Allows for fine-grain simulations [Selle et al. 2008]
 - Lack of stability if penalties used
 - Many contacts omitted → lack of volume
 - No dry friction (viscous model)
Fibers assemblies: Previous work

Main motivation
Hair simulation in Computer Graphics

Three families of models
③ Mixed of the two others [Mc Adams et al. 2009]
→ A mixed Eulerian-Lagrangian contact formulation
Main motivation
Hair simulation in Computer Graphics

Three families of models

- Mixed of the two others [Mc Adams et al. 2009]
 - A mixed Eulerian-Lagrangian contact formulation
 - Global volume preservation together with detailed features
Main motivation

Hair simulation in Computer Graphics

Three families of models

1. Mixed of the two others [Mc Adams et al. 2009]
 - A mixed Eulerian-Lagrangian contact formulation
 - Global volume preservation together with detailed features
 - Still no dry friction
In contrast, dry friction has been considered for a long time in Computer Graphics for the simulation of rigid bodies.
Frictional contact: Previous work

Ideal model for frictional contact
Non-penetration + Coulomb friction

\[\mathbf{u}_N \geq 0 \]

\[(\mathbf{u}, \mathbf{r}) \in C(\mathbf{e}, \mu) \]
Ideal model for frictional contact
Non-penetration + Coulomb friction

Most robust approach
→ Global formulation where velocities and contact forces are unknown
Implicit constrained-based methods, in practice

Common approximation in Computer Graphics

- Linearization of the Coulomb friction cone

→ Formulation of a Linear Complementarity Problem (LCP)
Common approximation in Computer Graphics

- Linearization of the Coulomb friction cone

→ Formulation of a Linear Complementarity Problem (LCP)

- A bunch of solvers available
Implicit constrained-based methods, in practice

Common approximation in Computer Graphics
- **Linearization** of the Coulomb friction cone
- → Formulation of a **Linear Complementarity Problem (LCP)**

- 😊 A bunch of solvers available
- 😞 Important drift when using too few facets
- 😞 Increasing the number of facets results in an explosion of variables
Implicit constrained-based methods, in practice

In contrast...
In Computational Mechanics

Exact Coulomb law numerically tackled for decades
Implicit constrained-based methods, in practice

In Computational Mechanics

Exact Coulomb law numerically tackled for decades

- Main application: simulation of granulars [Moreau 1994, Jean 1999]
Contributions

- Design a **generic** Newton algorithm for **exact Coulomb friction** in fiber assemblies, relying on the Alart and Curnier functional formulation

- Identify a simple criterion for **convergence**: no over-constraining
Outline

Formulating Contact in Fiber Assemblies

A Newton Algorithm for Exact Coulomb Friction

Results and Convergence Analysis

Discussion and Future Work
Outline

Formulating Contact in Fiber Assemblies

A Newton Algorithm for Exact Coulomb Friction

Results and Convergence Analysis

Discussion and Future Work
Kirchhoff model for thin elastic rods

- Inextensible
- Elastic bending and twist
Kirchhoff model for thin elastic rods

- Inextensible
- Elastic bending and twist

In practice, three rod models used

- Implicit mass-spring system [Baraff et al. 1998]
- Corde model [Spillmann et al. 2007]
- Super-helices [Bertails et al. 2006]
Kirchhoff model for thin elastic rods

- Inextensible
- Elastic bending and twist

In practice, three rod models used

- Implicit mass-spring system [Baraff et al. 1998]
- CORDE model [Spillmann et al. 2007]
- Super-helices [Bertails et al. 2006]

→ We define a generic discrete rod model:

\[M\mathbf{v} + f = 0 \quad \text{and} \quad u = H\mathbf{v} + w \]
Fiber assembly: One-step problem

- Global system (with frictional contact):
 \[
 \begin{align*}
 M \mathbf{v} + f &= H^T \mathbf{r} \\
 \mathbf{u} &= H \mathbf{v} + \mathbf{w} \\
 (\mathbf{u}, \mathbf{r}) &\text{ satisfies the Coulomb’s law}
 \end{align*}
 \]

(1)
Fiber assembly: One-step problem

- Global system (with frictional contact):
 \[
 \begin{align*}
 \mathbf{M} \mathbf{v} + \mathbf{f} &= \mathbf{H}^\top \mathbf{r} \\
 \mathbf{u} &= \mathbf{H} \mathbf{v} + \mathbf{w} \\
 (\mathbf{u}, \mathbf{r}) &= \text{satisfies the Coulomb's law}
 \end{align*}
 \]

- Compact formulation in \((\mathbf{u}, \mathbf{r})\):
 \[
 \begin{align*}
 \mathbf{u} &= \mathbf{W} \mathbf{r} + \mathbf{q} \\
 (\mathbf{u}, \mathbf{r}) &= \text{satisfies the Coulomb's law}
 \end{align*}
 \]

where \(\mathbf{W} = \mathbf{H} \mathbf{M}^{-1} \mathbf{H}^\top\) is the Delassus operator
Formulating Contact in Fiber Assemblies

A Newton Algorithm for Exact Coulomb Friction

Results and Convergence Analysis

Discussion and Future Work
Let $\mu \geq 0$ be the friction coefficient. We define the second-order cone K_μ,

$$K_\mu = \{ \| r_T \| \leq \mu r_N \} \subset \mathbb{R}^3$$
Coulomb’s law: disjunctive formulation

Let $\mu \geq 0$ be the friction coefficient.
We define the second-order cone K_μ,

$$K_\mu = \{ \| r_T \| \leq \mu r_N \} \subset \mathbb{R}^3$$

Frictional contact with Coulomb’s law (≈ 1780)

$$(u, r) \in C(e, \mu) \iff$$
Coulomb’s law: disjunctive formulation

Let $\mu \geq 0$ be the friction coefficient. We define the second-order cone K_μ,

$$K_\mu = \{ \| r_T \| \leq \mu r_N \} \subset \mathbb{R}^3$$

Frictional contact with Coulomb’s law (≈ 1780)

$$(u, r) \in C(e, \mu) \iff \begin{cases} \text{either take off} & r = 0 \text{ and } u_N > 0 \\ \text{or stick} & r \in K_\mu \text{ and } u = 0 \\ \text{or slide} & r \in \partial K_\mu \setminus 0, u_N = 0 \text{ and } \exists \alpha \geq 0, u_T = -\alpha r_T \end{cases}$$
Let $\mu \geq 0$ be the friction coefficient. We define the second-order cone K_μ,

$$K_\mu = \{ \|r_T\| \leq \mu r_N \} \subset \mathbb{R}^3$$

Frictional contact with Coulomb’s law (≈ 1780)

$$(u, r) \in C(e, \mu) \iff \begin{cases}
\text{either take off} & r = 0 \text{ and } u_N > 0 \\
\text{or stick} & r \in K_\mu \text{ and } u = 0
\end{cases}$$
Coulomb’s law: disjonctive formulation

Let $\mu \geq 0$ be the friction coefficient.
We define the second-order cone K_μ,

$$K_\mu = \{ \| r_T \| \leq \mu r_N \} \subset \mathbb{R}^3$$

Frictional contact with Coulomb’s law (≈ 1780)

$$(u, r) \in C(e, \mu) \iff \begin{cases}
\text{either take off} & r = 0 \text{ and } u_N > 0 \\
\text{or stick} & r \in K_\mu \text{ and } u = 0 \\
\text{or slide} & r \in \partial K_\mu \setminus 0, \ u_N = 0 \text{ and } \exists \alpha \geq 0, \ u_T = -\alpha r_T
\end{cases}$$
Coulomb’s law: functional formulation

Idea
Express Coulomb’s law as $f(u, r) = 0$ with f a nonsmooth function
Coulomb’s law: functional formulation

Idea
Express Coulomb’s law as \(f(u, r) = 0 \) with \(f \) a nonsmooth function

Alart and Curnier formulation (1991)

\[
\begin{align*}
f^{AC}(u, r) &= \begin{bmatrix} f^N_{AC}(u, r) \\ f^T_{AC}(u, r) \end{bmatrix} = \begin{bmatrix} P_{\mathbb{R}^+}(r_N - \rho_N u_N) \\ P_{\mathcal{B}(0, \mu r_N)}(r_T - \rho_T u_T) \end{bmatrix} - \begin{bmatrix} r_N \\ r_T \end{bmatrix}
\end{align*}
\]

where \(\rho_N, \rho_T \in \mathbb{R}^*_+ \) and \(P_K \) is the projection onto the convex \(K \).

\((u, r) \in C(e, \mu) \iff f^{AC}(u, r) = 0\)
Nonsmooth Newton on the Alart-Curnier function

Formulation of the one-step problem

\[
\begin{aligned}
\begin{cases}
u & = Wr + q \\
\mathbf{f}^{AC}(u, r) & = 0
\end{cases}
\end{aligned}
\]
Nonsmooth Newton on the Alart-Curnier function

Formulation of the one-step problem

\[
\begin{align*}
\begin{cases}
 \mathbf{u} &= W \mathbf{r} + \mathbf{q} \\
 f^{AC}(\mathbf{u}, \mathbf{r}) &= 0
\end{cases}
\end{align*}
\]

\[\Leftrightarrow f^{AC}(W \mathbf{r} + \mathbf{q}, \mathbf{r}) = \Phi(\mathbf{r}) = 0\]
Nonsmooth Newton on the Alart-Curnier function

Formulation of the one-step problem

\[
\begin{aligned}
\begin{cases}
u & = Wr + q \\
\mathbf{f}^{AC}(u, r) & = 0
\end{cases}
\end{aligned}
\]

\(\Leftrightarrow \mathbf{f}^{AC}(Wr + q, r) = \Phi(r) = 0\)

Solving method: (damped) Newton algorithm

- We minimize \(\|\Phi(r)\|^2\)
- Requires the computation of \(\nabla \Phi\) (subgradients)
- Natural stopping criterion: \(\frac{1}{2} \|\Phi(r)\|^2 < \varepsilon\)
Outline

Formulating Contact in Fiber Assemblies

A Newton Algorithm for Exact Coulomb Friction

Results and Convergence Analysis

Discussion and Future Work
Results
In theory...

- No proof of existence of a solution to the one-step problem
- No proof of convergence (nonsmooth function)
In theory...

- No proof of existence of a solution to the one-step problem
- No proof of convergence (nonsmooth function)

In practice

- Our fiber problems are likely to possess a solution [Cadoux 2009]
- We found an empiric criterion for convergence
• Let us define $\nu = \frac{3 \, n_{\text{contacts}}}{n_{\text{dofs}}}$
Convergence analysis

- Let us define $\nu = \frac{3n_{\text{contacts}}}{n_{\text{dofs}}}$
- Note that if $\nu > 1$ (over-constrained system), W is singular
Convergence analysis

- Let us define \(\nu = \frac{3n_{\text{contacts}}}{n_{\text{dofs}}} \)
- Note that if \(\nu > 1 \) (over-constrained system), \(W \) is singular
- In practice, reasonable convergence properties when \(\nu \leq 1 \)
Let us define \(\nu = \frac{3n_{\text{contacts}}}{n_{\text{dofs}}} \).

Note that if \(\nu > 1 \) (over-constrained system), \(\mathbf{W} \) is singular.

In practice, reasonable convergence properties when \(\nu \leq 1 \).

Even quadratic convergence in favorable cases.
Convergence analysis

- Let us define $\nu = \frac{3 \, n_{\text{contacts}}}{n_{\text{dofs}}}$
- Note that if $\nu > 1$ (over-constrained system), W is singular
- In practice, reasonable convergence properties when $\nu \leq 1$
- Even quadratic convergence in favorable cases
- Slow (or no) convergence when $\nu > 1$ (over-constrained systems)
Convergence time (in seconds) function of ν

Convergence illustration

convergence time (spaghetti 31/16)

convergence time (spaghetti 76/16)
Convergence analysis

• Let us define $\nu = \frac{3 n_{\text{contacts}}}{n_{\text{dofs}}}$
• Note that if $\nu > 1$ (over-constrained system), W is singular
• In practice, reasonable convergence properties when $\nu \leq 1$
• Even quadratic convergence in favorable cases
• Slow (or no) convergence when $\nu > 1$ (over-constrained systems)
• Let us define $\nu = \frac{3 n_{\text{contacts}}}{n_{\text{dofs}}}$
• Note that if $\nu > 1$ (over-constrained system), W is singular
• In practice, reasonable convergence properties when $\nu \leq 1$
• Even quadratic convergence in favorable cases
• Slow (or no) convergence when $\nu > 1$ (over-constrained systems)

→ ν plays the role of a conditioning number for our problem
Let us define $\nu = \frac{3n_{\text{contacts}}}{n_{\text{dofs}}}$.

Note that if $\nu > 1$ (over-constrained system), W is singular.

In practice, reasonable convergence properties when $\nu \leq 1$.

Even quadratic convergence in favorable cases.

Slow (or no) convergence when $\nu > 1$ (over-constrained systems).

ν plays the role of a conditioning number for our problem.

Better suited for assemblies of compliant models than rigid bodies.
Convergence analysis

• Let us define $\nu = \frac{3 \text{ncontacts}}{n_{\text{dofs}}}$

• Note that if $\nu > 1$ (over-constrained system), W is singular

• In practice, reasonable convergence properties when $\nu \leq 1$

• Even quadratic convergence in favorable cases

• Slow (or no) convergence when $\nu > 1$ (over-constrained systems)

→ ν plays the role of a conditioning number for our problem

→ better suited for assemblies of compliant models than rigid bodies

→ for over-constrained systems, a splitting strategy seems more appropriate
Outline

Formulating Contact in Fiber Assemblies

A Newton Algorithm for Exact Coulomb Friction

Results and Convergence Analysis

Discussion and Future Work
Conclusions

Contributions

- A generic Newton solver for capturing *exact Coulomb friction* in fibers
 Relying on the Alart and Curnier functional formulation
- A simple criterion for *convergence*
 Based on the degree of *constraining* of the system
Conclusions

Contributions

• A generic Newton solver for capturing exact Coulomb friction in fibers
 Relying on the Alart and Curnier functional formulation

• A simple criterion for convergence
 Based on the degree of constraining of the system

Source code
The source code for our solver is freely available on
Limitations and Future work

Limitations

- Slow (or no) convergence for over-constrained systems
- Does not scale up well (tens to hundreds fibers vs. thousands fibers)

Future work

- Design a robust solver for thousands densely packed rods
- Carefully validate the (hair) collective behavior against real experiments
- Build a macroscopic model for fibrous media (nonsmooth laws)
Limitations and Future work

Limitations

- Slow (or no) convergence for over-constrained systems
- Does not scale up well (tens to hundreds fibers vs. thousands fibers)

Future work

- Design a robust solver for thousands densely packed rods
- Carefully validate the (hair) collective behavior against real experiments
- Build a macroscopic model for fibrous media (nonsmooth laws)
Recent advance

Follow-up

- An improved functional formulation for exact Coulomb friction
- A splitting algorithm dedicated to large hair problems
 → In practice, this modified solver works very well for complex scenarios
Acknowledgments

We are grateful to the anonymous reviewers for their helpful comments.
Acknowledgments

We are grateful to the anonymous reviewers for their helpful comments.

Thank You for your attention!